

# PIANO ATTUATIVO CONFORME AL P.O. ADOTTATO Comparto 7 - Area di trasformazione TU\_C.cop1 a destinazione logistica

5.5

# Valutazione previsionale dell'impatto acustico

Scala --

**PROPONENTE** 



Cromwell Property Group Italy S.r.l.

#### PROGETTAZIONE E COORDINAMENTO DEL PROGETTO

The Blossom Avenue Partners
Prof. Arch. Marco Facchinetti
Urb. Marco Dellavalle
Arch. Luca De Stefani
Corso Italia 13, 20122, Milano
Tel +39 (02) 365 20482
tbapartners@pec.it

#### **PROGETTAZIONE**

Studio Tecnico di Progettazione Arch. Paolo Ceccantii via Casine, 3, 56035 - Casciana Terme Lari info@studioceccantiarchitettura.it

#### **PROGETTAZIONE**

Giannoni e Associati
Arch. Paolo Giannoni
Geom. Andrea Biagi
Geom. Michele Casalini
largo P. Lotti, 9/H, 56029 - Santa Croce sull'Arno
giannoni.associati@leonet.it

#### GEOLOGIA, GEOTECNICA SISMICA E AMBIENTALE

Studio Lithos Dott. Eraldo Santarnecchi via A. Diaz, 171, 56024 - Ponte a Egola info@studiolithos.net

#### IDROGEOLOGIA E INVARIANZA IDRAULICA

Dott. Ing. Silvia Lucia via di Gello, 42/I, 56038 - Ponsacco studiosilvialucia@gmail.com

#### STUDIO DEL TRAFFICO E ACUSTICA

TEA consulting Ing. Massimo Moi via G. B. Grassi, 15, 20157 - Milano moi@territorioambiente.com

#### PROGETTAZIONE DEL PAESAGGIO E DEL VERDE

Studio Architettura Paesaggio di Luigino Pirola Dott. Arch. Paesagg. Luigino Pirola Via Piave 1 24040 - Bonate Sopra (BG) info@studioarchitetturapaesaggio.it

Aggiornamento febbraio 2023





# COMUNE DI CASCIANA TERME LARI (PI) REALIZZAZIONE DI UNA STRUTTURA LOGISTICA

Ambiti TU C.co1 - TU C.co2

Studio previsionale di impatto acustico ex art. 8 c.4 L. 447/95

Giugno 2022

Rilievi eseguiti da: Dott. Marco Correngia Elaborazione eseguita da: Dott. Marco Correngia Supervisione di tutte le fasi ed approvazione di: Inq. Massimo Moi - T.C.A.A. DPGR Lombardia n. 14067



| INDICE    |                                                            |    |
|-----------|------------------------------------------------------------|----|
|           | ODUZIONE                                                   | _  |
|           | MENTI DI VALUTAZIONE                                       | _  |
|           | PRO NORMATIVO                                              | -  |
|           |                                                            |    |
|           | EGGE ORDINARIA DEL PARLAMENTO N.447 DEL 26 OTTOBRE 1995    |    |
| III.3 D   | .P.C.M. 14 NOVEMBRE 1997                                   | е  |
| III.4 D   | ECRETO MINISTERO DELL'AMBIENTE 16 MARZO 1998               | g  |
| III.5 D   | ECRETO PRESIDENTE DELLA REPUBBLICA N.142 DEL 30 MARZO 2004 | 12 |
| III.6 C   | LASSIFICAZIONE ACUSTICA DEL TERRITORIO COMUNALE            | 14 |
| III.6.1   | AREA DI INTERVENTO                                         | 15 |
| III.6.2   | RICETTORI SENSIBILI                                        | 16 |
| IV DESC   | RIZIONE DELL'AREA DI STUDIO                                | 17 |
|           | TORAGGIO ACUSTICO                                          |    |
| V.1 S     | TRUMENTAZIONE TECNICA                                      | 20 |
| V.2 N     | 1ODALITÀ DI MISURA                                         | 21 |
| VI RILIE  | VI STRUMENTALI                                             | 23 |
| VII MODE  | ELLO PREVISIONALE DI CLIMA ACUSTICO                        | 24 |
| VII.1 R   | UMORE PRODOTTO DA ATTIVITÀ INDUSTRIALI                     | 25 |
| VII.1.1   | DIVERGENZA GEOMETRICA                                      | 27 |
| VII.1.2   | ASSORBIMENTO ATMOSFERICO                                   | 27 |
| VII.1.3   | EFFETTO DEL TERRENO                                        | 27 |
| VII.1.4   | SCHERMI                                                    | 28 |
| VII.1.5   | EFFETTI ADDIZIONALI                                        | 29 |
| VII.2 R   | UMORE PRODOTTO DAL TRAFFICO VEICOLARE                      | 30 |
|           | ELLO DEL CLIMA ACUSTICO ALLO STATO DI FATTO                |    |
|           | BRAZIONE DEL MODELLO                                       | _  |
|           | TAZIONE PREVISIONALE DI IMPATTO ACUSTICO                   |    |
|           | ESCRIZIONE DELL'INTERVENTO                                 |    |
| X.2 S     | ORGENTI SONORE DI PROGETTO                                 | 36 |
| XI OPER   | E DI MITIGAZIONE PREVISTE                                  | 40 |
|           | RE DI MONITORAGGIO POST OPERAM                             | -  |
| XIII CONC | CLUSIONI                                                   | 42 |
| XIV ALLE  | GATI                                                       | 44 |
|           |                                                            |    |

Committente



#### **INTRODUZIONE**

Su incarico della committenza The Blossom Avenue Partners, è stata redatta la presente valutazione previsionale di impatto acustico ex art.8 c.4 L.447/95 relativamente al progetto di futura realizzazione di una piattaforma logistica nel comune di Casciana Terme Lari (PI), negli ambiti TU C.co1 e TU C.co2 adiacenti alla via Sicilia.

#### STRUMENTI DI VALUTAZIONE

Al fine di effettuare una corretta valutazione previsionale di impatto acustico è stato effettuato il seguente iter di valutazione:

- Preliminare sopralluogo tecnico presso l'area interessata;
- Richiesta di informazioni in merito al piano di classificazione acustica del territorio Comunale;
- Esecuzione di misure fonometriche diurne presso l'area di studio, al fine di determinare il clima acustico allo stato di fatto, dell'area in esame;
- Creazione e calibrazione di un modello del clima acustico adequatamente rappresentativo dell'area oggetto di studio attraverso il software CadNaA.
- Studio delle modifiche di progetto apportate all'area e clima acustico allo stato di progetto.
- Valutazione delle risultanze ottenute e confronto in merito ai valori limite disposti dalle vigenti normative;
- Eventuale valutazione in merito alla necessità di interventi tecnici di mitigazione.



#### **III QUADRO NORMATIVO**

Le vigenti normative tecniche di riferimento per la presente valutazione acustica vengono di seguito riportate:

#### III.1 D.P.C.M. 01 MARZO 1991

Con il D.P.C.M. 01 marzo 1991 "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno", si è proceduto alla fissazione, in via transitoria, dei limiti di accettabilità dei livelli di rumore da applicare su tutto il territorio nazionale, in attesa dell'approvazione di una legge quadro in materia di tutela dell'ambiente dall'inquinamento acustico.

Il Decreto sopracitato prevedeva che i Comuni adottassero la classificazione delle aree del proprio territorio e, conseguentemente, individuassero i relativi livelli massimi assoluti di rumore in relazione alla effettiva destinazione d'uso dello stesso (ved. Tabella 1).

Viene di seguito esposta la tabella relativa ai limiti massimi in riferimento alle classi di destinazione d'uso del territorio.

| CLASSI | DESTINAZIONE D'USO                 | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) | TEMPO RIF.<br>NOTTURNO<br>(22:00 – 06:00) |
|--------|------------------------------------|-----------------------------------------|-------------------------------------------|
| I      | Aree particolarmente protette      | 50                                      | 40                                        |
| П      | Aree destinate ad uso residenziale | 55                                      | 45                                        |
| III    | Aree di tipo misto                 | 60                                      | 50                                        |
| IV     | Aree di intensa attività umana     | 65                                      | 55                                        |
| V      | Aree prevalentemente industriali   | 70                                      | 60                                        |
| VI     | Aree esclusivamente industriali    | 70                                      | 70                                        |

Tabella 1 - limiti massimi del livello sonoro equivalente – Leq in dB(A)

In attesa della suddivisione del territorio comunale nelle sei classi acustiche, vengono applicate per le sorgenti sonore fisse i sequenti limiti di accettabilità (Art. 6, comma 1):



| ZONIZZAZIONE                           | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) | TEMPO RIF.<br>NOTTURNO<br>(22:00 – 06:00) |
|----------------------------------------|-----------------------------------------|-------------------------------------------|
| Tutto il territorio nazionale          | 70                                      | 60                                        |
| Zona A definita dal DM 1444/68, Art.2) | 65                                      | 55                                        |
| Zona B definita dal DM 1444/68, Art.2) | 60                                      | 50                                        |
| Zona esclusivamente industriale        | 70                                      | 70                                        |

Tabella 2 - limiti di accettabilità – Leq in dB(A)

La classificazione per aree del D.P.C.M. 01/03/1991 è destinata ad esaurire la propria efficacia, poiché, in attuazione della Legge Quadro sull'inquinamento acustico n°447/1995, il D.P.C.M. 14/11/1997 ha provveduto ad emanare la nuova normativa sulla determinazione dei valori limite delle sorgenti sonore.

L'applicazione della nuova normativa è pertanto subordinata all'azione dei Comuni che hanno l'obbligo di provvedere alla classificazione del territorio comunale. Pertanto, se un comune non ha ancora provveduto all'approvazione definitiva del Piano di Zonizzazione Acustica, rimangono applicabili i limiti stabiliti dal D.P.C.M. 01/03/1991 (disciplina transitoria, rif. Tabella 2).

#### III.2 LEGGE ORDINARIA DEL PARLAMENTO N.447 DEL 26 OTTOBRE 1995

La Legge ordinaria del Parlamento n.447 del 26 ottobre 1995 "Legge quadro sull'inquinamento acustico" stabilisce i principi fondamentali in materia di tutela dell'ambiente esterno e dell'ambiente abitativo dall'inquinamento acustico, ai sensi e per gli effetti dell'articolo 117 della Costituzione, demandando a successivi decreti di attuazione le specifiche discipline atte a renderne concrete le intenzioni.

La legge statale ha in parte ripreso dal D.P.C.M. 01/03/1991 alcuni concetti base quali la zonizzazione acustica del territorio comunale, i piani comunali di risanamento, il piano regionale (triennale) di priorità d'intervento per la bonifica dall'inquinamento acustico, basato sulle proposte comunali, ed i piani di risanamento delle imprese.

Giugno 2022



#### III.3 D.P.C.M. 14 NOVEMBRE 1997

In applicazione della Legge 447/1995, è stato emanato il D.P.C.M. 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore". Il decreto riprende la classificazione del territorio in 6 zone già vista nel D.P.C.M. 01/03/1991 e di seguito esposta in Tabella 3:

| CLASSE I   | Aree particolarmente protette  Rientrano in questa classe le aree nelle quali la quiete rappresenta un elemento di base per la loro utilizzazione: aree ospedaliere, scolastiche, aree destinate allo svago, aree residenziali rurali, aree di particolare interesse urbanistico, parchi                                                                                 |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | pubblici, ecc.                                                                                                                                                                                                                                                                                                                                                           |
|            | Aree destinate ad uso prevalentemente residenziale                                                                                                                                                                                                                                                                                                                       |
| CLASSE II  | Rientrano in questa classe le aree urbane interessate prevalentemente da traffico veicolare locale, con bassa densità di popolazione, con limitata presenza di attività commerciali ed assenza di attività industriali e artigianali.                                                                                                                                    |
|            | Aree di tipo misto                                                                                                                                                                                                                                                                                                                                                       |
| CLASSE III | Rientrano in questa classe le aree urbane interessate da traffico veicolare locale o di attraversamento, con media densità di popolazione, con presenza di attività commerciali, uffici, con limitata presenza di attività artigianali e con assenza di attività industriali; aree rurali interessate da attività che impiegano macchine operatrici.                     |
|            | Aree di intensa attività umana                                                                                                                                                                                                                                                                                                                                           |
| CLASSE IV  | Rientrano in questa classe le aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attività commerciali e uffici, con presenza di attività artigianali; le aree in prossimità di strade di grande comunicazione e di linee ferroviarie; le aree portuali; le aree con limitata presenza di piccole industrie. |
|            | Aree prevalentemente industriali                                                                                                                                                                                                                                                                                                                                         |
| CLASSE V   | Rientrano in questa classe le aree interessate da insediamenti industriali con scarsità di abitazioni.                                                                                                                                                                                                                                                                   |
|            | Aree esclusivamente industriali                                                                                                                                                                                                                                                                                                                                          |
| CLASSE VI  | Rientrano in questa classe le aree esclusivamente interessate da attività industriali prive di insediamenti abitativi.                                                                                                                                                                                                                                                   |

Tabella 3 - determinazione dei valori limite delle sorgenti sonore divisi per classi acustiche

Il D.P.C.M. 14/11/97 definisce i valori limite di emissione, assoluti di immissione, differenziali di immissione, di attenzione e di qualità.

I valori limite di emissione si riferiscono al livello generato dai contributi delle singole sorgenti fisse che promanano i propri effetti in una determinata area circostante alla sorgente stessa. I rilevamenti e le verifiche sono effettuati in "corrispondenza" degli spazi utilizzati da persone e comunità.

| Committente                                                     | Documento                                                                                                                                               | Data stampa | Pagina  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI)<br>Realizzazione di una struttura logistica<br>Ambiti TU C.co1 — TU C.co2<br>Studio previsionale di Impatto Acustico | Giugno 2022 | 6 di 44 |



I valori limite assoluti di immissione si riferiscono al rumore immesso nell'ambiente esterno da tutte le sorgenti (che promanano i loro effetti in una determinata area). Essi coincidono con quelli già fissati dal D.P.C.M. 01/03/1991 e sono differenziati all'interno di fasce di pertinenza per traffico veicolare, ferroviario, marittimo, aereo, autodromi, definite dai rispettivi Decreti Attuativi.

Vengono altresì definiti i valori limite differenziali di immissione come la differenza tra livello equivalente di rumore ambientale e rumore residuo. Come specificato nell'art. 4 comma 1 del Dpcm n. 14 del 97, tali limiti sono applicabili solo per ambienti abitativi e corrispondono a 5 dB e 3 dB rispettivamente per il periodo diurno e per il periodo notturno.

I Valori limite di attenzione impongono poi che Piani di risanamento sono obbligatori per il superamento di uno di essi. Infine, i Valori di qualità sono valori da conseguire nel medio periodo.

Vengono di seguito esposte le tabelle relative ai valori limite di emissione – assoluti di immissione – di qualità massimi in riferimento alle classi di destinazione d'uso del territorio.

#### Valori limite di emissione – Leq in dB(A):

| CLASSI | DESTINAZIONE D'USO                 | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) | TEMPO RIF.<br>NOTTURNO<br>(22:00 – 06:00) |
|--------|------------------------------------|-----------------------------------------|-------------------------------------------|
| I      | Aree particolarmente protette      | 45                                      | 35                                        |
| II     | Aree destinate ad uso residenziale | 50                                      | 40                                        |
| III    | Aree di tipo misto                 | 55                                      | 45                                        |
| IV     | Aree di intensa attività umana     | 60                                      | 50                                        |
| V      | Aree prevalentemente industriali   | 65                                      | 55                                        |
| VI     | Aree esclusivamente industriali    | 65                                      | 65                                        |

Tabella 4 - valori limite di emissione – Leq in dB(A)



### Valori limite di immissione – Leq in dB(A):

| CLASSI | DESTINAZIONE D'USO                 | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) | TEMPO RIF.<br>NOTTURNO<br>(22:00 – 06:00) |
|--------|------------------------------------|-----------------------------------------|-------------------------------------------|
| - 1    | Aree particolarmente protette      | 50                                      | 40                                        |
| II     | Aree destinate ad uso residenziale | 55                                      | 45                                        |
| III    | Aree di tipo misto                 | 60                                      | 50                                        |
| IV     | Aree di intensa attività umana     | 65                                      | 55                                        |
| V      | Aree prevalentemente industriali   | 70                                      | 60                                        |
| VI     | Aree esclusivamente industriali    | 70                                      | 70                                        |

Tabella 5 - valori limite di immissione – Leq in dB(A)

# Valori limite di qualità – Leq in dB(A):

| CLASSI | DESTINAZIONE D'USO                 | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) | TEMPO RIF.<br>NOTTURNO<br>(22:00 – 06:00) |
|--------|------------------------------------|-----------------------------------------|-------------------------------------------|
| I      | Aree particolarmente protette      | 47                                      | 37                                        |
| Ш      | Aree destinate ad uso residenziale | 52                                      | 42                                        |
| III    | Aree di tipo misto                 | 57                                      | 47                                        |
| IV     | Aree di intensa attività umana     | 62                                      | 52                                        |
| V      | Aree prevalentemente industriali   | 67                                      | 57                                        |
| VI     | Aree esclusivamente industriali    | 70                                      | 70                                        |

Tabella 6 - valori limite di qualità– Leq in dB(A)



#### III.4 DECRETO MINISTERO DELL'AMBIENTE 16 MARZO 1998

Il Decreto Ministero dell'Ambiente 16 marzo 1998 "Tecniche di rilevamento e di misurazione dell'inquinamento acustico" disciplina le tecniche relative al rilevamento ed alla misurazione del rumore ad esclusione dell'inquinamento nell'intorno aeroportuale.

Nell'Allegato "A" vengono fornite le seguenti definizioni:

- 1. Sorgente specifica: sorgente sonora selettivamente identificabile che costituisce la causa del potenziale inquinamento acustico.
- 2. Tempo a lungo termine (TL): rappresenta un insieme sufficientemente ampio di TR all'interno del quale si valutano i valori di attenzione. La durata di TL è correlata alle variazioni dei fattori che influenzano la rumorosità di lungo periodo.
- 3. Tempo di riferimento (TR): rappresenta il periodo della giornata all'interno del quale si eseguono le misure. La durata della giornata è articolata in due tempi di riferimento: quello diurno compreso tra le h 6,00 e le h 22,00 e quello notturno compreso tra le h 22,00 e le h 6,00.
- 4. Tempo di osservazione (TO): è un periodo di tempo compreso in TR nel quale si verificano le condizioni di rumorosità che si intendono valutare.
- 5. Tempo di misura (TM): all'interno di ciascun tempo di osservazione, si individuano uno o più tempi di misura (TM) di durata pari o minore del tempo di osservazione in funzione delle caratteristiche di variabilità del rumore ed in modo tale che la misura sia rappresentativa del fenomeno.
- 6. Livelli dei valori efficaci di pressione sonora ponderata "A": LAS, LAF LAI. Esprimono i valori efficaci in media logaritmica mobile della pressione sonora ponderata "A" LPA secondo le costanti di tempo "slow" "fast", "impulse".
- 7. Livelli dei valori massimi di pressione sonora L<sub>ASmax</sub>, L<sub>AFmax</sub>, L<sub>AImax</sub>. Esprimono i valori massimi della pressione sonora ponderata in curva "A" e costanti di tempo "slow", "fast", "impulse".
- 8. Livello continuo equivalente di pressione sonora ponderata "A": valore del livello di pressione sonora ponderata "A" di un suono costante che, nel corso di un periodo specificato T, ha la medesima pressione quadratica media di un suono considerato, il cui livello varia in funzione del tempo:

$$L_{Aeq,T} = 10 \log \left[ \frac{1}{t_2 - t_1} \int_0^t \frac{p_A^2(t)}{p_0^2} dt \right] dB(A)$$

Dove  $L_{Aeq}$  è il livello continuo equivalente di pressione sonora ponderata "A" considerato in un intervallo di tempo che inizia all'istante t1 e termina all'istante t2;  $p_A$  (t) è il valore istantaneo della

| Committente                                                     | Documento                                | Data stampa | Pagina  |
|-----------------------------------------------------------------|------------------------------------------|-------------|---------|
| The Disease Assess Destroys                                     | Comune di Casciana Terme Lari (PI)       | •           | _       |
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Realizzazione di una struttura logistica | <b>C</b> :  | . 4:    |
|                                                                 | Ambiti TU C.co1 – TU C.co2               | Giugno 2022 | 9 di 44 |
| iviliano (ivii)                                                 | Studio previsionale di Impatto Acustico  |             |         |



- pressione sonora ponderata "A" del segnale acustico in Pascal (Pa); po =  $20 \mu Pa$  è la pressione sonora di riferimento.
- 9. Livello continuo equivalente di pressione sonora ponderata "A" relativo al tempo a lungo termine TL (L<sub>Aeq,TL</sub>): il livello continuo equivalente di pressione sonora ponderata "A" relativo al tempo a lungo termine (L<sub>Aeq,TL</sub>) può essere riferito:
  - a. Al valore medio su tutto il periodo, con riferimento al livello continuo equivalente di pressione sonora ponderata "A" relativo a tutto il tempo TL, espresso dalla relazione:

$$L_{Aeq,TL} = 10 \log \left[ \frac{1}{N} \sum_{i=1}^{N} 10^{0,1(L_{Aeq,T_R})_i} \right] dB(A)$$

Essendo N i tempi di riferimento considerati;

b. Al singolo intervallo orario nei TR. In questo caso si individua un TM di 1 ora all'interno del TO nel quale si svolge il fenomeno in esame. (L<sub>Aeq,TL</sub>) rappresenta il livello continuo equivalente di pressione sonora ponderata "A" risultante dalla somma degli M tempi di misura TM, espresso dalla sequente relazione:

$$L_{Aeq,TL} = 10 \log \left[ \frac{1}{M} \sum_{i=1}^{M} 10^{0,1(L_{Aeq,T_R})_i} \right] dB(A)$$

Dove i è il singolo intervallo di 1 ora nell'iesimo TR. E' il livello che si confronta con i limiti di attenzione.

10. Livello sonoro di un singolo evento LAE, (SEL): è dato dalla formula:

$$SEL = L_{AE} = 10 \log \left[ \frac{1}{t} \int_{0}^{t} \frac{p_{A}^{2}(t)}{p_{0}^{2}} dt \right] dB(A)$$

Dove

- t2 t1 è un intervallo di tempo sufficientemente lungo da comprendere l'evento; to è la durata di riferimento (l s).
- 11. Livello di rumore ambientale (LA): è il livello continuo equivalente di pressione sonora ponderato "A", prodotto da tutte le sorgenti di rumore esistenti in un dato luogo durante un determinato tempo. Il rumore ambientale è costituito dall'insieme del rumore residuo e da quello prodotto dalle specifiche sorgenti disturbanti, con l'esclusione degli eventi sonori singolarmente identificabili di natura eccezionale rispetto al valore ambientale della zona. E' il livello che si confronta con i limiti massimi di esposizione:

| Committente                 | Documento                                | Data stampa | Pagina   |
|-----------------------------|------------------------------------------|-------------|----------|
| The Blossom Avenue Partners | Comune di Casciana Terme Lari (PI)       |             |          |
| Corso Italia n.13           | Realizzazione di una struttura logistica | Giugno 2022 | 10 di 44 |
| Milano (MI)                 | Ambiti TU C.co1 – TU C.co2               |             |          |
| wildio (wii)                | Studio previsionale di Impatto Acustico  |             |          |



- a. Nel caso dei limiti differenziali, è riferito a TM;
- b. Nel caso di limiti assoluti è riferito a TR.
- 12. Livello di rumore residuo (LR): è il livello continuo equivalente di pressione sonora ponderato "A", che si rileva quando si esclude la specifica sorgente disturbante. Deve essere misurato con le identiche modalità impiegate per la misura del rumore ambientale e non deve contenere eventi sonori atipici.
- 13. Livello differenziale di rumore (LD): differenza tra il livello di rumore ambientale. (LA) e quello di rumore residuo (LR):

$$LD = (L_A - L_R)$$

- 14. Livello di emissione: è il livello continuo equivalente di pressione sonora ponderato "A", dovuto alla sorgente specifica. È il livello che si confronta con i limiti di emissione.
- 15. Fattore correttivo (Ki): è la correzione in dB(A) introdotta per tener conto della presenza di rumori con componenti impulsive, tonali o di bassa frequenza il cui valore è di seguito indicato:
  - a. Per la presenza di componenti impulsive KI = 3 dB
  - b. Per la presenza di componenti tonali KT = 3 dB
  - c. Per la presenza di componenti in bassa frequenza KB = 3 dB.

I fattori di correzione non si applicano alle infrastrutture dei trasporti.

- 16. Presenza di rumore a tempo parziale: esclusivamente durante il tempo di riferimento relativo al periodo diurno, si prende in considerazione la presenza di rumore a tempo parziale, nel caso di persistenza del rumore stesso per un tempo totale non superiore ad un'ora. Qualora il tempo parziale sia compreso in 1 h il valore del rumore ambientale, misurato in Leq(A) deve essere diminuito di 3 dB(A); qualora sia inferiore a 15 minuti il Leq(A) deve essere diminuito di 5 dB(A).
- 17. Livello di rumore corretto (LC): è definito dalla relazione:

$$L_c = L_A + K_I + K_T + K_R$$



#### III.5 DECRETO PRESIDENTE DELLA REPUBBLICA N.142 DEL 30 MARZO 2004

Il Decreto del Presidente della Repubblica 30 Marzo 2004, n. 142 "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n. 447" stabilisce le norme per la prevenzione ed il contenimento dell'inquinamento da rumore avente origine dall'esercizio delle infrastrutture stradali (autostrade, strade extraurbane principali, strade extraurbane secondarie, strade urbane di scorrimento, strade urbane di quartiere, strade locali).

A seconda della tipologia dell'infrastruttura stradale, vengono definiti i valori limite all'interno delle fasce territoriali di pertinenza.

Per le stesse infrastrutture del trasporto (stradali, ferroviarie, aeroportuali e marittime) non si applicano infine i limiti differenziali sia in periodo diurno che in periodo notturno (comma 3 art. 4 DPCM 14.11.97).

Vengono di seguito esposte le tabelle relative alle strade di nuova realizzazione ed alle strade esistenti e assimilabili.

| TIPO DI STRADA                      | SOTTOTIPI A FINI ACUSTICI (secondo DM 5.11.01)  Ampiezza fascia di pertinenza acustica (m) | fascia di | Scuole*, ospedali, case di cura e di riposo                                                                                         |                   | Altri ricettori |                   |
|-------------------------------------|--------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------|
| (secondo codice<br>della strada)    |                                                                                            | acustica  | Diurno<br>dB(A)                                                                                                                     | Notturno<br>dB(A) | Diurno<br>dB(A) | Notturno<br>dB(A) |
| <b>A</b> – autostrada               | //                                                                                         | 250       | 50                                                                                                                                  | 40                | 65              | 55                |
| <b>B</b> – extraurbana principale   | 11                                                                                         | 250       | 50                                                                                                                                  | 40                | 65              | 55                |
| <b>C</b> – extraurbana              | C1                                                                                         | 250       | 50                                                                                                                                  | 40                | 65              | 55                |
| secondaria                          | C2                                                                                         | 150       | 50                                                                                                                                  | 40                | 65              | 55                |
| <b>D</b> – urbana di<br>scorrimento | //                                                                                         | 100       | 50                                                                                                                                  | 40                | 65              | 55                |
| <b>E</b> – urbana di<br>quartiere   | 11                                                                                         | 30        | Definiti dai Comuni, nel rispetto dei valori riportati in tabella C allegata al D.P.C.M. in da 14 novembre 1997 e comunque in modo  |                   | C.M. in data    |                   |
| F – locale                          | 11                                                                                         | 30        | conforme alla zonizzazione acustica delle a<br>urbane, come prevista dall'art. 6, comma<br>lettera a), della legge n. 447 del 1995. |                   |                 | comma 1,          |

Tabella 7 - limiti per strade di nuova realizzazione



| TIPO DI STRADA                   | SOTTOTIPI A<br>FINI ACUSTICI                                | Ampiezza<br>fascia di | _                                                                                                                                                                                                                                                                                      | spedali, case<br>di riposo | Altri ricettori |                        |    |    |    |
|----------------------------------|-------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|------------------------|----|----|----|
| (secondo codice<br>della strada) | (secondo norme<br>CNR 1980 e<br>direttive PUT)              | acustica              | Diurno<br>dB(A)                                                                                                                                                                                                                                                                        | Notturno<br>dB(A)          | Diurno<br>dB(A) | Notturno<br>dB(A)      |    |    |    |
| <b>A</b> – autostrada            | 11                                                          | 100<br>(Fascia A)     | 50                                                                                                                                                                                                                                                                                     | 40                         | 70              | 60                     |    |    |    |
| 7 dotostiada                     | 11                                                          | 150<br>(Fascia B)     | 30                                                                                                                                                                                                                                                                                     | 40                         | 65              | 55                     |    |    |    |
| <b>B</b> – extraurbana           | 11                                                          | 100<br>(Fascia A)     | E0                                                                                                                                                                                                                                                                                     | 40                         | 70              | 60                     |    |    |    |
| principale                       | 11                                                          | 150<br>(Fascia B)     | 50                                                                                                                                                                                                                                                                                     | 40                         | 65              | 55                     |    |    |    |
|                                  | Ca (strade a<br>carreggiate                                 | 100<br>(Fascia A)     | 50                                                                                                                                                                                                                                                                                     | F0                         | 50              | 50                     | 40 | 70 | 60 |
| <b>C</b> – extraurbana           | separate e tipo IV<br>CNR 1980)                             | 150<br>(Fascia B)     | 30                                                                                                                                                                                                                                                                                     | 40                         | 65              | 55                     |    |    |    |
| secondaria                       | Cb (tutte le altre<br>strade                                | 100<br>(Fascia A)     | <del>-</del> 50                                                                                                                                                                                                                                                                        | 50                         | 40              | 70                     | 60 |    |    |
|                                  | extraurbane<br>secondarie)                                  | 150<br>(Fascia B)     |                                                                                                                                                                                                                                                                                        | 40                         | 65              | 55                     |    |    |    |
| D – urbana di                    | Da (strade a<br>carreggiate<br>separate e<br>interquartiere | 100                   | 50                                                                                                                                                                                                                                                                                     | 40                         | 70              | 60                     |    |    |    |
| scorrimento                      | Db (tutte le altre<br>strade urbane di<br>scorrimento)      | 100                   |                                                                                                                                                                                                                                                                                        |                            | 65              | 55                     |    |    |    |
| E – urbana di<br>quartiere       | 11                                                          | 30                    | Definiti dai Comuni, nel rispetto dei valori<br>riportati in tabella C allegata al D.P.C.M. in dat<br>14 novembre 1997 e comunque in modo<br>conforme alla zonizzazione acustica delle area<br>urbane, come prevista dall'art. 6, comma 1,<br>lettera a), della legge n. 447 del 1995. |                            |                 | C.M. in data<br>n modo |    |    |    |
| F – locale                       | 11                                                          | 30                    |                                                                                                                                                                                                                                                                                        |                            |                 | omma 1,                |    |    |    |

Tabella 8 - valori limiti per strade esistenti e assimilabili

| Committente                 | Documento                                | Data stampa | Pagina   |
|-----------------------------|------------------------------------------|-------------|----------|
| The Blossom Avenue Partners | Comune di Casciana Terme Lari (PI)       |             |          |
| Corso Italia n.13           | Realizzazione di una struttura logistica | Giuano 2022 | 13 di 44 |
| Milano (MI)                 | Ambiti TU C.co1 – TU C.co2               | Giugno 2022 |          |
|                             | Studio previsionale di Impatto Acustico  |             |          |



#### III.6 CLASSIFICAZIONE ACUSTICA DEL TERRITORIO COMUNALE

Come già precedentemente specificato, la Legge 447/95 "Legge Quadro sull'inquinamento acustico" dispone che i Comuni adottino per il proprio territorio di competenza, un piano di classificazione acustica redatto in conformità con quanto stabilito dalla normativa stessa. Dalle informazioni ricevute dal Comune di Casciana Terme Lari (PI) si evince che attualmente, il comune in oggetto dispone di un Piano di Classificazione Acustica regolarmente approvato da Deliberazione del Consiglio Comunale.

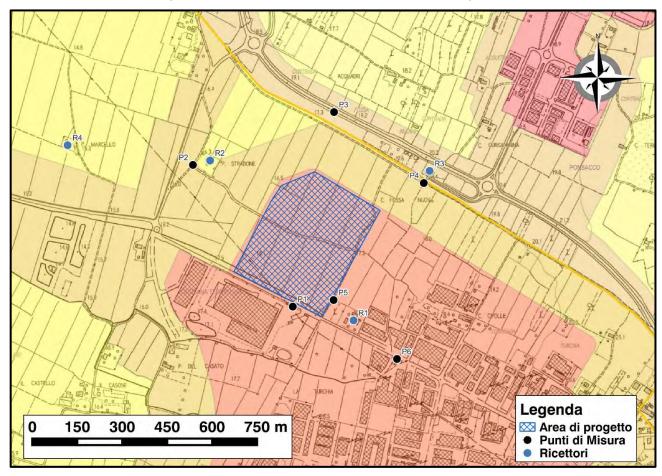



Figura 1 - classificazione acustica dell'area di intervento



#### III.6.1 AREA DI INTERVENTO

Dall'analisi di tale piano di zonizzazione acustica si evince che l'area dove sarà ubicato l'insediamento **risulta** classificata in Classe V "Aree prevalentemente industriali" e che le aree limitrofe sono classificate tra la classe V, IV e III.

Sono stati scelti 6 punti di rilievo nell'intorno territoriale per mappare il clima acustico allo stato di fatto.

| PUNTI DI<br>MISURA | DESCRIZIONE PUNTO                                                                                                                          | CLASSE<br>ACUSTICA | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|
| P1                 | Punto di misura su via Sicilia per la<br>mappatura della rumorosità della tratta<br>stradale.                                              | 5                  | 70 dBA                                  |
| P2                 | Punto di misura in adiacenza alla via<br>Melorie, per la mappatura della rumorosità<br>della tratta stradale. Adiacente al ricettore<br>R2 | 4                  | 6 <sub>5</sub> dBA                      |
| P <sub>3</sub>     | Punto di misura sulla Variante str. 439 per<br>la mappatura della rumorosità della tratta<br>stradale.                                     | 4                  | 6 <sub>5</sub> dBA                      |
| P4                 | Punto di misura adiacente al ricettore R <sub>3</sub> nella direttiva del nuovo insediamento logistico.                                    | 4                  | 6 <sub>5</sub> dBA                      |
| P <sub>5</sub>     | Punto di misura adiacente al ricettore R1 nella direttiva del nuovo insediamento logistico.                                                | 5                  | 70 dBA                                  |
| Р6                 | Punto di misura lungo via Sicilia in<br>adiacenza alla zona industriale esistente,<br>per la mappatura della rumorosità della<br>zona.     | 5                  | 70 dBA                                  |

Tabella 9 - punti di misura selezionati



#### III.6.2 RICETTORI SENSIBILI

Ai fini delle successive valutazioni sono stati considerati i seguenti ricettori sensibili più prossimi all'area di intervento. I suddetti ricettori sono posizionati come riportato nella Tabella seguente:

| RICETTORE<br>SENSIBILE | DESCRIZIONE RICETTORE                                                             | CLASSE<br>ACUSTICA | TEMPO RIF.<br>DIURNO<br>(06:00 – 22:00) |
|------------------------|-----------------------------------------------------------------------------------|--------------------|-----------------------------------------|
| R1                     | Ricettore abitativo su via Sicilia ad est del comparto logistico a circa 90 m.    | 5                  | 70 dBA                                  |
| R <sub>2</sub>         | Ricettore abitativo su via Melorie ad ovest del comparto logistico a circa 235 m. | 3                  | 6o dBA                                  |
| R <sub>3</sub>         | Ricettore abitativo su variante str 439 ad est del comparto logistico a circa 200 | 4                  | 6 <sub>5</sub> dBA                      |
| R4                     | Ricettore abitativo ad ovest del comparto logistico a circa 700 m.                | 3                  | 6o dBA                                  |

Tabella 10 – ricettori sensibili considerati



#### IV DESCRIZIONE DELL'AREA DI STUDIO

L'area oggetto della presente valutazione previsionale di impatto acustico, si trova nel comune di Casciana Terme Lari (PI) in un'area ad oggi agricola. Gli ambiti presi in considerazione per la nuova realizzazione sono denominati TU C.co1 e TU C.co2 e riguardano l'area indicata nella figura seguente.




Figura 2 - Ortofoto con localizzazione dell'area

Dall'ortofoto precedente si può notare come l'area risulti attualmente sgombra da costruzioni. Sui lati sud ed est si estende un'area industriale consolidata. Sui lati nord ed ovest vi sono invece aree agricole e sporadiche abitazioni.



L'area di progetto si presenta fondamentalmente pianeggiante con una quota topografica variabile tra i 16.5 ed i 17.5 m.s.l.m., come visibile dalla carta tecnica regionale di seguito.

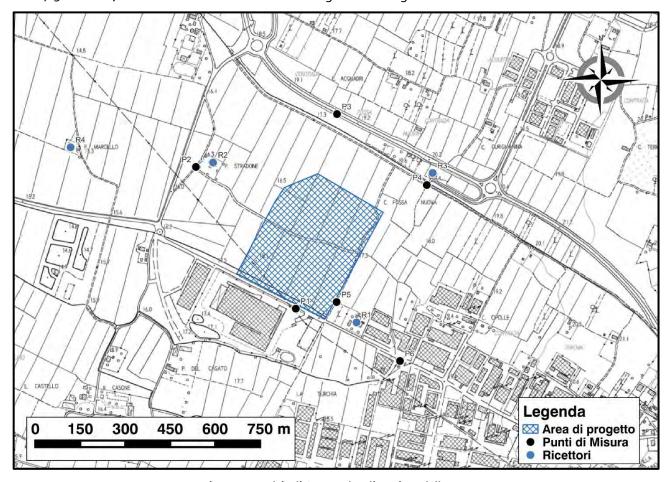



Figura 3 - stralcio di CTR con localizzazione dell'area



L'area di progetto si sviluppa in fregio alla via Sicilia passante a sud, alla variante Str. 439 a nord ed alla via Melorie ad ovest. È proprio dalla via Melorie, che andando verso nord defluirà la viabilità di comparto verso lo svincolo della Strada di Grande Comunicazione Firenze-Pisa-Livorno.

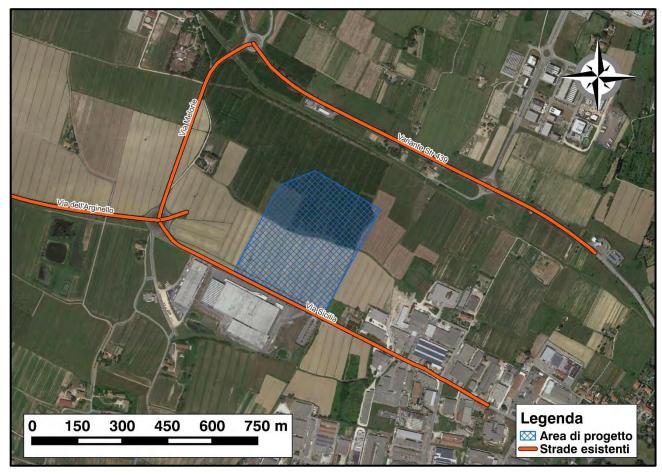



Figura 4 - viabilità di comparto

Committente



#### MONITORAGGIO ACUSTICO

#### V.1 STRUMENTAZIONE TECNICA

Si è utilizzata la sequente strumentazione conforme agli standard prescritti dall'articolo 2 del D.M. 16/03/98: Fonometro Larson Davis modello 831C di classe 1 (EN/IEC 61672, EN/IEC 61260), numero di serie 11546, con gamma da 6,3 Hz a 20 kHz e dinamica superiore a 110 dB.

- Microfono PCB Piezotronics modello 377Bo2, numero di serie 330790
- Preamplificatore PCB Piezotronics modello PRM831, numero di serie 071129
- Calibratore Larson Davis modello CAL200, numero di serie 4485.

In allegato i certificati di taratura della strumentazione utilizzata durante i rilievi operativi.



#### V.2 MODALITÀ DI MISURA

La catena fonometrica è stata calibrata all'inizio e alla fine della serie di misure con l'ausilio di apposito calibratore; si conferma che la variazione è risultata contenuta entro 0,5 dB come richiesto dal D.M.A. 16 marzo 1998 (articolo 2 comma 3).

Le condizioni meteorologiche durante ogni sessione di monitoraggio acustico soddisfacevano i parametri richiesti dal D.M.A. 16 marzo 1998 (allegato B punto 7); si attesta che il microfono in dotazione alla strumentazione tecnica era munito di idonea cuffia antivento.

Le specifiche di misura sono riportate negli elaborati grafici allegati, ove vengono riportati:

- Il livello equivalente Leq (il valore di livello sonoro medio sul periodo di tempo considerato);
- La data e l'ora della misura;
- La time history (i valori del livello equivalente rilevato ad intervalli di 100 ms);
- Il running Leq (il valore di livello equivalente progressivo nel tempo);
- Livelli percentili 01-10-50-90-95-99 (livelli di rumore superati rispettivamente per l'1%, il 10%, il 50%, il 90%, il 95% ed il 99% del tempo di rilievo);
- Spettro sonoro per banda di terzo d'ottava;
- Descrizione della misura;
- Eventuali riconoscimenti dell'impulsività / tonalità degli eventi, in accordo all'Allegato B punti 8, 9, 10, 11 del D.M.A. 16 marzo 1998;
- Eventuali mascheramenti dovuti ad eventi non riconducibili all'attività monitorata.

#### Componenti impulsive

Il rumore è considerato avente componenti impulsive quando sono verificate le condizioni seguenti:

- L'evento è ripetitivo;
- La differenza tra L<sub>Almax</sub> e L<sub>Asmax</sub> è superiore a 6 dB;
- La durata dell'evento a -10 dB dal valore L<sub>AFmax</sub> è inferiore a 1 s.

L'evento sonoro impulsivo si considera ripetitivo quando si verifica almeno 10 volte nell'arco di un'ora nel periodo diurno ed almeno 2 volte nell'arco di un'ora nel periodo notturno.

Se si ha la presenza di componenti impulsive viene, come già precedentemente specificato, applicato un fattore correttivo  $K_i$  che rappresenta la correzione in dB(A) introdotta per tener conto del disturbo indotto da rumori impulsivi e risulta pari a 3 dB.

| Committente                                                     | Documento                                                                                              | Data stampa | Pagina   |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|----------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI) Realizzazione di una struttura logistica Ambiti TU C.co1 – TU C.co2 | Giugno 2022 | 21 di 44 |
| Willano (Wil)                                                   | Studio previsionale di Impatto Acustico                                                                |             |          |



#### Componenti tonali

Al fine di individuare la presenza di componenti tonali (CT) nel rumore, è stata effettuata un'analisi spettrale per bande normalizzate di 1/3 di ottava tra 20Hz e 20 kHz. Si è in presenza di una CT se il livello minimo di una banda supera i livelli minimi delle bande adiacenti per almeno 5 dB. Si applica il fattore di correzione  $K_T$  soltanto se la CT tocca una isofonica eguale o superiore a quella più elevata raggiunta dalle altre componenti dello spettro. La normativa tecnica di riferimento è la ISO 266:1987. Anche in questo caso il fattore  $K_T$  dev'essere sommato al livello equivalente di pressione sonora e risulta pari a 3 dBA(A).

Se l'analisi in frequenza rileva la presenza di CT tali da consentire l'applicazione del fattore correttivo  $K_T$  nell'intervallo di frequenze compreso fra 20 Hz e 200 Hz, si applica anche la correzione  $K_B$  così come definita al punto 15 dell'allegato A, esclusivamente nel tempo di riferimento notturno.

La catena fonometrica è stata calibrata all'inizio e alla fine della serie di misure con l'ausilio di apposito calibratore; si conferma che la variazione è risultata contenuta entro 0,5 dB come richiesto dal D.M.A. 16 marzo 1998 (articolo 2 comma 3).

Committente



#### VI RILIEVI STRUMENTALI

In data 01/06/2022 sono stati eseguiti i rilievi strumentali ante-operam per caratterizzare il clima acustico nell'intorno dell'area allo stato di fatto in periodo diurno. Nella Tabella 11 seguente si riportano i valori misurati ante-operam arrotondati a 0.5 dB(A) ai sensi del DM 16 marzo 1998.

| PUNTI DI<br>MISURA | RUMORE<br>AMBIENTALE (LA)<br>TR. DIURNO | COMPONENTI<br>IMPULSIVE | COMPONENTI<br>TONALI | RUMORE<br>CORRETTO (LC)<br>TR. DIURNO |
|--------------------|-----------------------------------------|-------------------------|----------------------|---------------------------------------|
| P1                 | 70.7                                    | NO                      | NO                   | 70.5                                  |
| P2                 | 49.8                                    | NO                      | NO                   | 50.0                                  |
| P <sub>3</sub>     | 71.7                                    | NO                      | NO                   | 71.5                                  |
| P4                 | 50.7                                    | NO                      | NO                   | 50.5                                  |
| P <sub>5</sub>     | 51.2                                    | NO                      | NO                   | 51.0                                  |
| P6                 | 66.9                                    | NO                      | NO                   | 67.0                                  |

Tabella 11 – valori misurati ante-operam periodo diurno

#### Periodo diurno

- P1 rumore da traffico veicolare lungo la via Sicilia e dagli impianti dell'azienda lato sud.
- P2 rumore da traffico veicolare lungo via Melorie.
- P3 rumore da traffico veicolare lungo variante Str. 439
- P4 rumore da traffico veicolare lungo variante Str. 439
- P5 rumore da traffico veicolare lungo via Sicilia.
- P6 rumore da traffico veicolare lungo via Sicilia e dalle attività antropiche nell'area industriale.



#### VII MODELLO PREVISIONALE DI CLIMA ACUSTICO

La struttura generale di un modello previsionale, pur nella variabilità dei diversi software in commercio è identificabile con i sequenti passaggi:

- 1. La rappresentazione numerica della configurazione ambientale in esame;
- 2. La modellizzazione numerica dell'emissione sonora della sorgente o del rumore da questa immesso in una prefissata posizione di riferimento;
- 3. La modellizzazione numerica della propagazione sonora dalla sorgente ai ricettori;
- 4. La rappresentazione in forma numerica e grafica (solitamente attraverso delle curve di isolivello) dei risultati del calcolo.

Per poter sviluppare in modo omogeneo lo schema soprascritto ci si è avvalsi del programma previsionale **CadNaA 4.6.155**. Questo programma è organizzato in moduli che sviluppano in modo esaustivo i quattro punti dello schema generale di un modello previsionale.

CadNaA presenta al suo interno tutti i maggiori standard europei; per la valutazione in oggetto sono stati scelti i sequenti standard di calcolo:

- Rumore da attività industriale: ISO 9613-2.
- Traffico veicolare: metodo di calcolo ufficiale francese NMPB-Routes-96/NMPB-Routes-08,
   LRS90 ed altri ancora.
- Rumore ferroviario: metodo di calcolo ufficiale dei Paesi Bassi.
- Rumore aeromobili: ECAC.CEAC doc.29.

Il software CadNaA utilizzato rispetta tutti gli standard richiesti a capitolato ed in particolare quanto richiesto dalla Direttiva Europea 2002/49/CE e dalla Raccomandazione 2003/613/CE. Esso può arrivare a gestire fino a 16 milioni di oggetti distinti per ogni tipologia di oggetto (quali edifici, strade, ferrovia ecc.) e fino a 1000 edifici schermanti per singola area di studio.



#### VII.1 RUMORE PRODOTTO DA ATTIVITÀ INDUSTRIALI

Il software CadNaA per il calcolo del rumore prodotto da attività industriale si basa sulla norma ISO 9613.

La suddetta norma è dedicata alla modellizzazione della propagazione acustica nell'ambiente esterno, ma non fa riferimento alcuno a sorgenti specifiche di rumore. Valuta la propagazione del suono in condizioni di "sotto-vento" e di inversione termica, condizioni favorevoli alla propagazione del suono.

La prima parte della norma (ISO 9613-1:1993) tratta esclusivamente il problema del calcolo dell'assorbimento acustico atmosferico, mentre la seconda parte (ISO 9613-2:1996) tratta in modo complessivo il calcolo dell'attuazione acustica dovuta a tutti i fenomeni fisici di rilevanza più comune, ossia:

- Divergenza geometrica (Ad)
- Assorbimento atmosferico (Aa)
- Effetto del terreno (Ag)
- Riflessioni da parte di superfici di vario genere (Ar)
- Effetto schermante di ostacoli (Ab)
- Effetti addizionali (Amisc)

Le sorgenti di rumore possono essere considerate puntiformi solamente se rispettano il sequente criterio

Dove **d** è la distanza reciproca fra la sorgente e l'ipotetico ricevitore, mentre **Hmax** è la dimensione maggiore della sorgente. In alternativa devono essere calcolate le dimensioni della sorgente sonora.

L'equazione che permette di determinare il livello sonoro in condizioni favorevoli alla propagazione in ogni punto ricevitore è:

$$Lp = Lw + D - Ad - Aa - Ag - Ar - Ab - Amisc$$

#### Dove:

- Lp: livello di pressione sonoro equivalente in banda di ottava (dB) generato nel punto p dalla sorgente s alla frequenza f.
- Lw: livello di potenza sonora in banda di ottava alla frequenza f (dB) prodotto dalla singola sorgente s relativa ad una potenza sonora di riferimento di un picowatt.
- D: indice di direttività della sorgente sonora s (dB).

| Committente                                                     | Documento                                                                                                                                      | Data stampa | Pagina   |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI) Realizzazione di una struttura logistica Ambiti TU C.co1 — TU C.co2 Studio previsionale di Impatto Acustico | Giugno 2022 | 25 di 44 |



Le migliori condizioni di propagazione, corrispondenti alle condizioni di "sottovento" e/o di moderata inversione termica (tipica del periodo notturno) è così definita:

- Direzione del vento compresa entro un angolo di ± 45° rispetto alla direzione individuata dalla retta che congiunge il centro della sorgente sonora al ricevitore, con il vento che spira dalla sorgente verso il ricevitore;
- Velocità del vento compresa fra 1 e 5 m/s, misurata ad una altezza dal suolo compresa fra 3 e 11 metri.

Il valore totale del livello sono equivalente ponderato in curva A si ottiene sommando i contributi di tutte le bande di ottava e di tutte le sorgenti presenti secondo la seguente equazione:

$$Leq(dB(A)) = 10 \cdot \log \left( \left( \sum_{i=1}^{n} \left( \sum_{j=1}^{8} 10^{0.1(Lp(ij) + A(j))} \right) \right) \right)$$

#### Dove:

- n: numero di sorgenti
- j: indice che indica le otto frequenze standard in banda d'ottava da 63 Hz a 8 kHz.
- $A_{(i)}$ : indica il coefficiente della curva ponderata A.



#### VII.1.1 DIVERGENZA GEOMETRICA

L'attenuazione per divergenza è calcolata secondo la formula seguente:

$$Ad = 20 \cdot log\left(\frac{d}{d_0}\right) + 11dB$$

Dove d è la distanza tra la sorgente e il ricevitore in metri e  $d_0$  è la distanza di riferimento  $d_0$ =1m.

#### VII.1.2 ASSORBIMENTO ATMOSFERICO

L'attenuazione per assorbimento atmosferico è calcolata secondo la formula:

$$Aa = \alpha \frac{d}{1000} dB$$

Dove *d* rappresenta la distanza di propagazione in metri e a rappresenta il coefficiente di assorbimento atmosferico in dB per chilometro per ogni banda di ottava secondo quanto riportato nelle tabelle contenute nella norma ISO 9613.

Per valori di temperatura o umidità relativa differenti da quelli indicati i coefficienti sono calcolati per interpolazione.

#### VII.1.3 EFFETTO DEL TERRENO

La ISO 9613 prevede due metodi per il calcolo dell'attenuazione dovuta all'assorbimento da parte del terreno uno più completo e uno semplificato. Per ragioni di sintesi di cui si riporta brevemente solo quello semplificato, che calcola l'attenuazione dovuta al terreno ponderata in curva A (e non quindi in banda d'ottava):

$$Ag = 4.8 - {2h_m/d}(17 + {300/d}) dB$$

Dove:

- $h_m$ : altezza media del raggio di propagazione in metri
- d: distanza tra la sorgente ed il recettore in metri.

Questo metodo è applicabile solo quando la propagazione del suono avviene su terreni porosi o prevalentemente porosi come terreni coperti da erba, terriccio o coltivazione. Non è applicabile quando i suoni presentano dei toni puri.



#### VII.1.4 SCHERMI

Le condizioni per considerare un oggetto come schermo sono le seguenti:

- La densità superficiale dell'oggetto è almeno pari a 10 kg/m².
- L'oggetto ha una superficie uniforme e compatta (si ignorano quindi molti impianti presenti in zone industriali).
- La dimensione orizzontale dell'oggetto normale al raggio acustico è maggiore della lunghezza d'onda della banda nominale in esame.

Il modello di calcolo valuta solo la differenza dal bordo superiore orizzontale secondo l'equazione:

$$Ab = D_z - Ag$$

Dove:

- $D_z$ : attenuazione della barriera in banda di ottava
- Ag: attenuazione del terreno in assenza della barriera.

Si tenga presente che l'attenuazione provocata dalla barriera tiene conto dell'effetto del suolo quindi in presenza di una barriera non si calcola l'effetto suolo. Deve essere considerato solo il percorso principale. L'equazione che descrive l'effetto dello schermo è la seguente:

$$D_z = 10 \cdot log[3 + (C_2/\lambda) \cdot C_3 \cdot z \cdot K_{met}] dB$$

Dove:

- C₂: uquale a 20
- C<sub>3</sub>: vale 1 in caso di diffrazione semplice mentre in caso di diffrazione doppia vale:

$$C_3 = [1 + (5\lambda/\lambda e)^2]/[1/3 + (5\lambda/e)^2]$$

Dove:

- λ: lunghezza d'onda nominale in banda d'ottava in esame
- z: differenza tra il percorso diretto del raggio acustico e il percorso diffratto calcolato come mostrato nelle immagini in Figura 5.

K<sub>met</sub>: correzione meteorologica data da

$$K_{met} = exp\left[-(1/2000)\sqrt{d_{ss}d_{sr}/2_z}\right]$$

e: distanza tra i due spigoli in caso di diffrazione doppia.

| Committente                                                     | Documento                                                                                                                                      | Data stampa | Pagina   |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI) Realizzazione di una struttura logistica Ambiti TU C.co1 – TU C.co2 Studio previsionale di Impatto Acustico | Giugno 2022 | 28 di 44 |



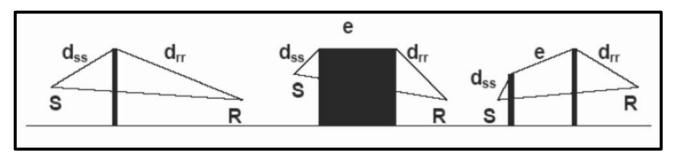



Figura 5 - barriere acustiche

Non bisogna dimenticare che il calcolo per ogni banda d'ottava viene comunque limitato a 20 dB in caso di diffrazione singola e a 25 dB in caso di diffrazione doppia; in caso di barriere multiple la ISO 9613-2 suggerisce di utilizzare comunque l'equazione per il caso di due barriere considerando solo le due barriere più significative.

#### VII.1.5 EFFETTI ADDIZIONALI

Gli effetti addizionali sono decritti nell'appendice della ISO 9613-2 e considerano un percorso di propagazione del suono curvato verso il basso con un arco di raggio pari a 5 km. Tale percorso è tipico delle condizioni meteorologiche assunte come base della ISO 9613-2.

#### Gli effetti descritti sono:

- A<sub>fol</sub>: attenuazione dovuta alla propagazione attraverso vegetazione;
- A<sub>site</sub>: attenuazione dovuta alla propagazione attraverso siti industriali;
- A<sub>hous</sub>: attenuazione dovuta alla propagazione attraverso zone edificate.

In particolare, l'attenuazione dovuta all'attraversamento di zone edificate è calcolata secondo la formula:

$$A_{hous} = 0.1 B d$$

#### Dove:

- B: densità degli edifici nella zona data dal rapporto tra la zona edificata e la zona libera;
- d: lunghezza del raggio curvo che attraversa la zona edificata sia nei pressi della sorgente che nei pressi del recettore.

Importane ricordare che il valore dell'attenuazione non deve superare i 10 dB e he se il valore dell'attenuazione del suolo calcolato come se le case non fossero presenti risulta maggiore dell'attenuazione calcolata con l'equazione sopra, allora tale ultimo termine viene trascurato.

| Committente                                                     | Documento                                | Data stampa  | Pagina    |
|-----------------------------------------------------------------|------------------------------------------|--------------|-----------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI)       |              |           |
|                                                                 | Realizzazione di una struttura logistica | Giugno 2022  | 29 di 44  |
|                                                                 | Ambiti TU C.co1 – TU C.co2               | Glugilo 2022 | 29 til 44 |
| Willano (Wil)                                                   | Studio previsionale di Impatto Acustico  |              |           |



#### VII.2 RUMORE PRODOTTO DAL TRAFFICO VEICOLARE

Il livello sonoro prodotto in un'azienda limitrofa ad un'infrastruttura stradale dipenderà ovviamente dal contributo emesso dall'impresa stessa e dal traffico veicolare dell'area; di conseguenza, in un modello di rumore ambientale, per caratterizzare il clima acustico dell'intorno territoriale è necessario scindere i due contributi.

Per valutare il contributo dovuto alla viabilità è possibile scegliere tra due possibilità:

- Ricavare la rumorosità da rilievi fonometrici, eseguiti in campo, lungo il tratto di strada interessato;
- Ricavare matematicamente la rumorosità conoscendo il numero e la tipologia di veicoli circolanti sulla strada stessa.

Percorrendo la seconda opzione, è possibile valutare matematicamente il livello equivalente di rumore di una strada sommando i contributi dovuti al passaggio di ogni singolo veicolo. In assenza di uno standard italiano ben definito, si è scelto di utilizzare il modello RLS 90 (tedesco) che si basa sulla seguente espressione per il calcolo del livello di rumorosità a 25 metri dalla carreggiata più vicina.

$$L_{eq}(25 m) = 36.8 + 10 \log[M(1 + 0.082 + p)] + \Delta L_{stro} + \Delta L_k + \Delta L_{stq} + \Delta L_v$$

#### Nella quale:

- *M*: è la portata oraria dei veicoli
- *P*: è la percentuale di veicoli pesanti
- $\Delta L_{stro}$ : è la correzione per il tipo di pavimentazione (tabellata)
- $\Delta L_K$ : è la correzione per rallentamenti dovuti ai semafori (tabellata)
- $\Delta L_{stg}$ : è la correzione per la pendenza della strada
- $\Delta L_v$ : è la correzione per velocità diverse da quelle standard (110 km/h per i veicoli leggeri e 80 per quelli pesanti).



#### VIII MODELLO DEL CLIMA ACUSTICO ALLO STATO DI FATTO

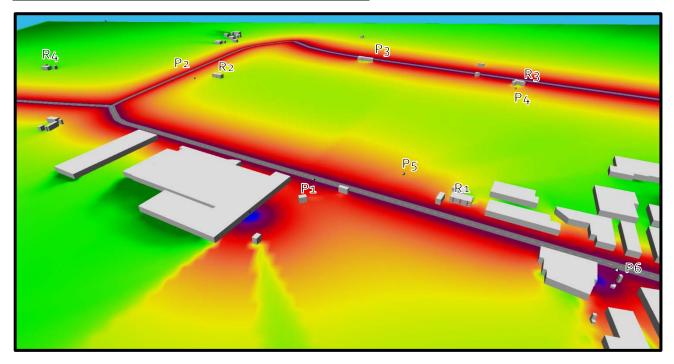
Per ricostruire il clima acustico dell'area in esame allo stato di fatto è stato realizzato un modello digitale del terreno con le diverse altezze a cui sono ubicate le strade, gli edifici industriali e residenziali ed in particolare:

- L'area in esame su cui sorgerà la nuova struttura logistica
- Le strade limitrofe, in particolare la via Sicilia, la variante str. 439 e la via Melorie.
- Gli altri edifici presenti nell'intorno territoriale, tra i quali i ricettori sensibili.

Successivamente è stata stimata la rumorosità dell'area in esame in base alle misure eseguite in campo anteoperam (reports in Allegato 1) rispetto ai ricettori sensibili di cui alla successiva Tabella 12.

| RICETTORE      | VALORE CALCOLATO ALLO SDF<br>TEMPO RIF. DIURNO<br>(06:00 – 22:00) | LIMITE ACUSTICO<br>TEMPO RIF. DIURNO<br>(06:00 – 22:00) |
|----------------|-------------------------------------------------------------------|---------------------------------------------------------|
| R1             | 58.9 dBA                                                          | 70 dBA                                                  |
| R <sub>2</sub> | 49.7 dBA                                                          | 6o dBA                                                  |
| R <sub>3</sub> | 61.3 dBA                                                          | 65 dBA                                                  |
| R4             | 45.8 dBA                                                          | 6o dBA                                                  |

Tabella 12 - valori calcolati ante operam


#### Periodo diurno

• I valori calcolati allo Stato di Fatto mostrano il rispetto dei limiti della zonizzazione acustica vigente per tutti i ricettori.



Di seguito si riportano la visuale 3D della mappa del clima acustico dell'area in esame allo stato di fatto in periodo diurno

# STATO DI FATTO – PERIODO DI RIFERIMENTO DIURNO





#### IX CALIBRAZIONE DEL MODELLO

Il modello è stato calibrato e validato per passi successivi con l'ausilio di punti di controllo. In questi ultimi, in accordo con la norma UNI 11143-1, sono state eseguite delle misure reali e successivamente si è verificato che il modello calcolasse, negli stessi punti, die valori che approssimassero al meglio la realtà misurata. Sulla base dei valori misurati nei punti di riferimento, sono stati modificati i valori dei parametri di ingresso del modello di calcolo (potenza sonora e direttività delle sorgenti sonore, tipologia puntuale, lineare od areale, ecc.), in modo tale che la media degli scarti al quadrato tra i valori calcolati con il modello, *Lcc* ed i valori misurati *Lmc*, nei punti di riferimento-calibrazione sia minore di 1,5 dB:

$$\frac{\sum_{c=1}^{N_R}|Lmc-Lcc|^2}{N_R}<1.5~dB$$

Dove:

 $N_R$  è il numero dei punti di misura di riferimento per la calibrazione;

Nella Tabella seguente, sono riportati i valori di rumore calcolati (*Lcc*), misurati (*Lmc*) e il loro scarto quadratico per il rumore ambientale allo stato di fatto. Per il modello dello stato di fatto la somma di tutti gli scarti quadratici divisa per il loro numero è risultata minore di 1.5 e pertanto è possibile affermare che il modello risulta calibrato.

|                  | DIURNO             |                     |        |          |             |       |                      |
|------------------|--------------------|---------------------|--------|----------|-------------|-------|----------------------|
| Punto<br>rilievo | Rumore<br>misurato | Rumore<br>calcolato | Scarto | Quadrato | N.<br>punti | Somma | Scarto<br>quadratico |
| P1               | 70.7               | 70.6                | 0.1    | 0.01     |             |       |                      |
| P <sub>2</sub>   | 49.8               | 49.8                | 0.0    | 0.00     |             |       |                      |
| P <sub>3</sub>   | 71.7               | 71.6                | 0.1    | 0.01     | 5           | 0.12  | 0.02                 |
| P4               | 50.7               | 50.4                | 0.3    | 0.09     |             |       |                      |
| P5               | 51.2               | 51.1                | 0.1    | 0.01     |             |       |                      |

Tabella 13 - calibrazione del modello periodo di riferimento diurno



#### X VALUTAZIONE PREVISIONALE DI IMPATTO ACUSTICO

#### X.1 DESCRIZIONE DELL'INTERVENTO

Nel presente capitolo si riportano sinteticamente i dati principali del progetto utili ai fini della valutazione preliminare di impatto acustico e si rimanda alla documentazione specifica progettuale e urbanistica per maggiori approfondimenti.

L'area di progetto si ubica nel comune di Casciana Terme Lari (PI) in adiacenza alla via Sicilia, alla via Melorie ed alla variante str.439.

Il masterplan di progetto ha come superficie complessiva circa 155.000 mq suddivise nei due ambiti TU C.co1 e TU C.co2.

Il progetto prevede la realizzazione di n.2 edifici ad uso magazzino e logistica di altezza massima 12 metri, i parcheggi pertinenziali sia pubblici che privati, la viabilità interna di comparto ed esterna.



Figura 6 - area allo stato di progetto

| Committente                                                     | Documento                                | Data stampa    | Pagina   |  |
|-----------------------------------------------------------------|------------------------------------------|----------------|----------|--|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI)       |                |          |  |
|                                                                 | Realizzazione di una struttura logistica | Giugno 2022 34 | 34 di 44 |  |
|                                                                 | Ambiti TU C.co1 – TU C.co2               |                |          |  |
|                                                                 | Studio previsionale di Impatto Acustico  |                |          |  |



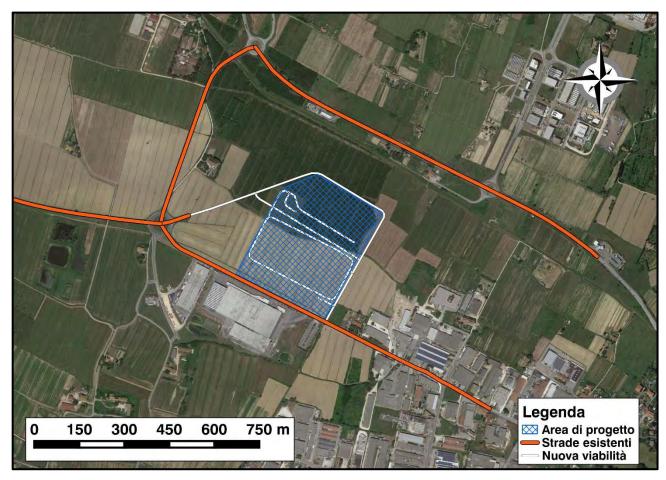



Figura 7 - nuova viabilità di comparto

Per quanto concerne la nuova viabilità di comparto, nella figura precedente essa viene schematizzata nei tratti bianchi.

Ai fini della valutazione previsionale di impatto acustico si è provveduto ad inserire all'interno dell'area in oggetto la costruzione di progetto, le sorgenti sonore immesse ed a valutare i livelli sonori ai ricettori.

La valutazione previsionale di impatto acustico è stata eseguita in orario diurno, prendendo come riferimento quanto segue:

- N.2 capannoni alti 12 metri da piano campagna di superficie circa 30.840 e 21.600 mq.
- Un periodo di funzionamento degli impianti di progetto (UTA e Chiller in copertura) pari a 16 ore.
- Funzionamento delle attività di magazzino interno e del traffico indotto pari a 16 ore.
- Funzionamento delle baie di carico per 30 minuti cadauna in orario diurno.

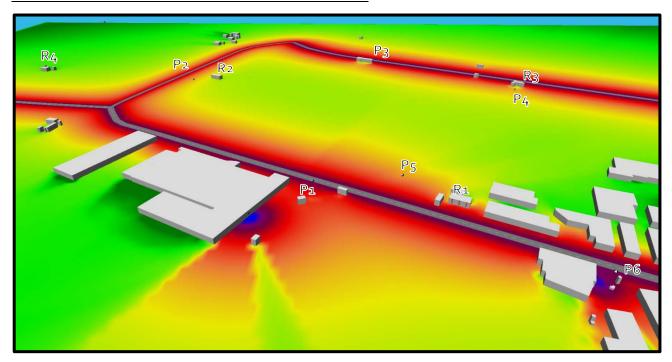
| Committente                                                     | Documento                                                                                                    | Data stampa | Pagina   |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------|----------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI)<br>Realizzazione di una struttura logistica<br>Ambiti TU C.co1 – TU C.co2 | Giugno 2022 | 35 di 44 |
|                                                                 | Studio previsionale di Impatto Acustico                                                                      |             |          |



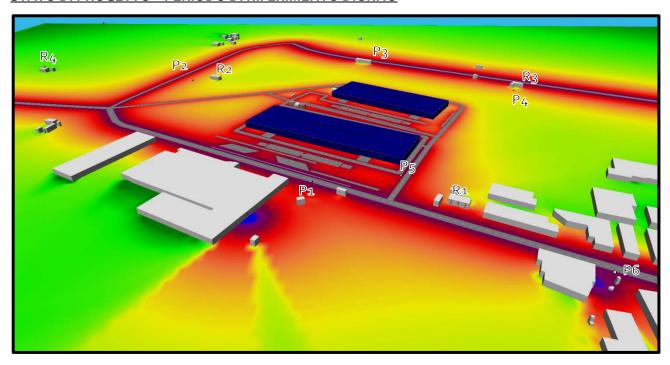
#### X.2 SORGENTI SONORE DI PROGETTO

| SORGENTI DI PROGETTO                                 | POTENZA SONORA DI<br>PROGETTO                          | DESCRIZIONE ED ORARIO DI<br>FUNZIONAMENTO                                                                                    |
|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Magazzino edificio 1-2                               | LwA = 121.7 dBA (complessiva<br>dell'intero magazzino) | Sorgenti areali verticali sulle pareti<br>della struttura di vendita con un<br>Rw = 47 dBA.<br>Funzionamento 16 h/d – diurno |
| Magazzino edificio 3-4                               | LwA = 120.1 dBA (complessiva<br>dell'intero magazzino) | Sorgenti areali verticali sulle pareti<br>della struttura di vendita con un<br>Rw = 47 dBA.<br>Funzionamento 16 h/d – diurno |
| n.62 impianti in copertura<br>magazzino edificio 1-2 | LwA = 99.0 dBA                                         | Sorgenti areali verticali di 2.5 metri<br>di altezza in copertura<br>Rw = 40 dBA.<br>Funzionamento 16 h/d — diurno           |
| n.43 impianti in copertura<br>magazzino edificio 1-2 | LwA = 99.0 dBA                                         | Sorgenti areali verticali di 2.5 metri<br>di altezza in copertura<br>Rw = 40 dBA.<br>Funzionamento 16 h/d — diurno           |
| n.52 baie di carico poste sui<br>lati dei capannoni  | LwA = 85 dBA                                           | Sorgenti areali verticali sui lati<br>esterni del capannone.<br>Funzionamento 30 minuti al giorno<br>cadauna – diurno        |
| Traffico indotto interno ed esterno                  | Calcolata tramite software previsionale CadNaA         | Veicoli leggeri — 18o auto/giorno<br>Veicoli pesanti — 52 camion/giorno                                                      |

Tabella 14 - sorgenti sonore di progetto


Come specificato nel paragrafo 4 è qui ripreso, è dalla nuova rotonda di progetto e successivamente dalla via Melorie, che andando verso nord defluirà il traffico indotto dal da e per il comparto, verso lo svincolo della Strada di Grande Comunicazione Firenze-Pisa-Livorno.

Nelle pagine seguenti si riportano le mappe 3D del modello acustico allo stato di fatto ed allo stato di progetto in periodo diurno.


| Committente                                                     | Documento                                | Data stampa | Pagina   |
|-----------------------------------------------------------------|------------------------------------------|-------------|----------|
| The Blossom Avenue Partners<br>Corso Italia n.13<br>Milano (MI) | Comune di Casciana Terme Lari (PI)       |             |          |
|                                                                 | Realizzazione di una struttura logistica | C:          |          |
|                                                                 | Ambiti TU C.co1 – TU C.co2               | Giugno 2022 | 36 di 44 |
| iviliano (ivii)                                                 | Studio previsionale di Impatto Acustico  |             |          |



### STATO DI FATTO – PERIODO DI RIFERIMENTO DIURNO



### STATO DI PROGETTO – PERIODO DI RIFERIMENTO DIURNO



| Committente                                      |
|--------------------------------------------------|
| The Blossom Avenue Partners<br>Corso Italia n.13 |
| Milano (MI)                                      |

| Documento                                |
|------------------------------------------|
| Comune di Casciana Terme Lari (PI)       |
| Realizzazione di una struttura logistica |
| Ambiti TU C.co1 – TU C.co2               |
| Studio previsionale di Impatto Acustico  |

| Data stampa | Pagina   |
|-------------|----------|
| Giugno 2022 | 37 di 44 |



#### VALORI DI IMMISSIONE E VALORI DIFFERENZIALI CALCOLATI AI RICETTORI

Con la configurazione di progetto di cui descritto al paragrafo precedente sono stati calcolati in corrispondenza dei ricettori considerati (R1÷R4) i livelli di rumore previsti allo stato di progetto e successivamente confrontati con i relativi limiti di immissione e differenziale in periodo diurno.

| RICETTORE      | VALORE<br>CALCOLATO<br>ALLO SDF<br>TR. DIURNO | VALORE<br>CALCOLATO<br>ALLO SDP<br>TR. DIURNO | LIMITE ACUSTICO<br>TR. DIURNO | DIFFERENZIALE<br>TR. DIURNO | LIMITE<br>DIFFERENZIALE<br>TR. DIURNO |
|----------------|-----------------------------------------------|-----------------------------------------------|-------------------------------|-----------------------------|---------------------------------------|
| R1             | 58.9 dBA                                      | 58.9 dBA                                      | 70.0 dBA                      | 0.0                         | 5.o dBA                               |
| R2             | 49.7 dBA                                      | 51.5 dBA                                      | 6o.o dBA                      | 1.8                         | 5.o dBA                               |
| R <sub>3</sub> | 61.3 dBA                                      | 61.3 dBA                                      | 65.o dBA                      | 0.0                         | 5.0 dBA                               |
| R4             | 45.8 dBA                                      | 46.1 dBA                                      | 6o.o dBA                      | 0.3                         | 5.0 dBA                               |

Analizzando nel dettaglio i valori calcolati ai singoli ricettori si rileva in sintesi quanto segue:

#### Ricettore R1

- Rispetto del limite di immissione sia allo SDF che allo SDP per la classe acustica V.
- Rispetto del limite differenziale con aumento di o.o dBA.

#### Ricettore R2

- Rispetto del limite di immissione sia allo SDF che allo SDP per la classe acustica III
- Rispetto del limite differenziale con aumento di 1.8 dBA

#### Ricettore R3

- Rispetto del limite di immissione sia allo SDF che allo SDP per la classe acustica IV
- Rispetto del limite differenziale con aumento di o.o dBA

#### Ricettore R4

- Rispetto del limite di immissione sia allo SDF che allo SDP per la classe acustica III
- Rispetto del limite differenziale con aumento di 0.3 dBA



#### Riassumendo i risultati ottenuti:

- Il limite di immissione viene sempre rispettato allo stato di progetto ove già rispettato allo stato di fatto.
- Il limite differenziale è sempre rispettato in periodo diurno, a fronte delle attività della nuova struttura logistica.
- ❖ In periodo notturno non vi saranno attività né funzionamento degli impianti.
- Insonorizzando le sorgenti sonore (UTA e Chiller) presenti in copertura con pannelli fonoisolanti con RW = 40 dBA, non si ha incremento sonoro dovuto alle suddette sorgenti, misurato ai ricettori.



#### XI OPERE DI MITIGAZIONE PREVISTE

A seguito della modellizzazione dello stato di fatto e dello stato di progetto è risultata necessaria una insonorizzazione delle sorgenti sonore presenti in copertura (UTA e Chiller) con pannelli fonoisolanti di attenuazione pari a RW = 40 dBA

La progettazione dei pannelli fonoisolanti che effettivamente verranno installati, sarà redatta specificatamente in sede di progetto esecutivo.



#### XII MISURE DI MONITORAGGIO POST OPERAM

Una volta messa a regime l'attività con tutti gli impianti in funzione sarà cura del conduttore/utilizzatore effettuare un'indagine acustica in ambiente esterno al fine di valutare in opera il rispetto dei limiti normativi di riferimento. Tale monitoraggio post operam sarà effettuato in corrispondenza dei ricettori sensibili valutati nel presente studio previsionale d'impatto acustico.



#### XIII CONCLUSIONI

Su incarico della committenza The Blossom Avenue Partners, è stata redatta la presente valutazione previsionale di impatto acustico ex art.8 c.4 L.447/95 relativamente al progetto di futura realizzazione di una piattaforma logistica nel comune di Casciana Terme Lari (PI), negli ambiti TU C.co1 e TU C.co2 adiacenti alla via Sicilia.

L'area oggetto della presente valutazione previsionale di impatto acustico, si trova nel comune di Casciana Terme Lari (PI) in un'area ad oggi agricola. Gli ambiti presi in considerazione per la nuova realizzazione sono denominati TU C.co1 e TU C.co2 e riguardano l'area indicata nella figura seguente.

Dall'ortofoto precedente si può notare come l'area risulti attualmente sgombra da costruzioni. Sui lati sud ed est si estende un'area industriale consolidata. Sui lati nord ed ovest vi sono invece aree agricole e sporadiche abitazioni.

L'area di progetto si presenta fondamentalmente pianeggiante con una quota topografica variabile tra i 16.5 ed i 17.5 m.s.l.m., come visibile dalla carta tecnica regionale di seguito.

L'area di progetto si sviluppa in fregio alla via Sicilia passante a sud, alla variante Str. 439 a nord ed alla via Melorie ad ovest. È proprio dalla via Melorie, che andando verso nord defluirà la viabilità di comparto verso lo svincolo della Strada di Grande Comunicazione Firenze-Pisa-Livorno.

Ai fini della valutazione previsionale di impatto acustico ex art.8 c.4 L.447/95 in data 01/06/2022 sono state effettuati i seguenti rilievi ante operam in periodo diurno in corrispondenza dei punti P1÷P6 di modo da mappare il clima acustico del territorio ante operam.

Una volta effettuata la mappatura del clima acustico territoriale allo stato di fatto si è pertanto proceduto a simulare all'interno dell'area l'inserimento della futura attività di progetto in periodo diurno.

Dall'analisi dei risultati di calcolo emerge come l'intervento in progetto così come configurato risulti compatibile con il clima acustico territoriale dell'area determinando:

- Il rispetto del limite di immissione allo stato di progetto ove già rispettato allo stato di fatto in periodo diurno.
- Il rispetto del limite differenziale in periodo diurno, a fronte di un aumento di traffico veicolare e della presenza delle attività della struttura logistica.



❖ La necessità di insonorizzare le sorgenti sonore (UTA e Chiller) presenti in copertura con pannelli fonoisolanti con Rw almeno pari a 40 dBA, per non avere incremento dei livelli sonori dovuto alle suddette sorgenti, misurato ai ricettori.

Per quanto sopra dettagliato il clima acustico della zona risulta invariato allo stato di progetto, garantendo il rispetto dei limiti di immissione sonora e dei limiti differenziali previsti ai ricettori considerati.

Una volta messa a regime l'attività con tutti gli impianti in funzione sarà comunque cura del conduttore/utilizzatore effettuare un'indagine acustica in ambiente esterno al fine di valutare in opera il rispetto dei limiti normativi di riferimento.



### **XIV ALLEGATI**

Allegato 1 – report delle misure effettuate

Allegato 2 – modello del clima acustico allo SDF e SDP

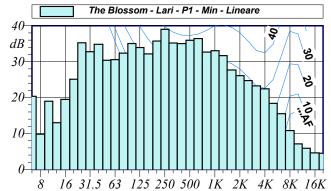
Allegato 3 – certificato di taratura della strumentazione

# Allegato 1 Report delle misure effettuate

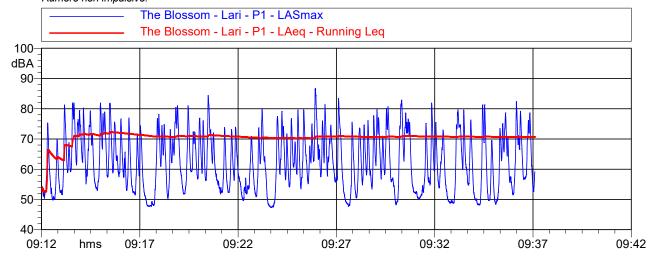
Lari (PI) Località: Strumentazione: 831C 11546

Marco Correngia - TCAA Massimo Moli Hz 01/06/2022 09:12:18 Nome operatore:

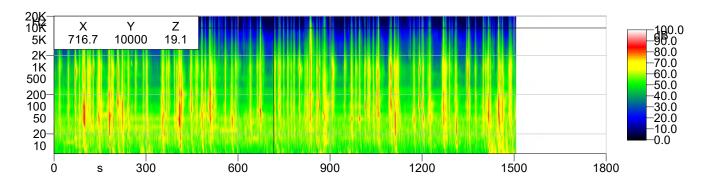
01/06/2022 09:12:18 Data, ora misura:


L1: 82.7 dBA L10: 74.4 dBA

L50: 59.6 dBA L90: 50.2 dBA


L95: 48.8 dBA L99: 47.6 dBA

 $L_{Aeq} = 70.7 dB$ 






Annotazioni: Traffico veicolare Rumore non impulsivo.

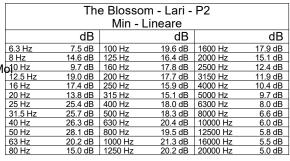


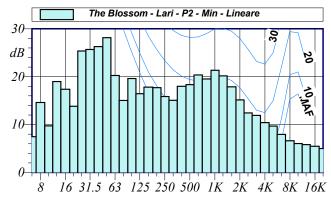
| The Blossom - Lari - P1 |                             |              |          |  |  |  |
|-------------------------|-----------------------------|--------------|----------|--|--|--|
|                         | LAeq - Run                  | ning Leq     |          |  |  |  |
| Nome Inizio Durata Leq  |                             |              |          |  |  |  |
| Totale                  | 09:12                       | 00:25:05.700 | 70.7 dBA |  |  |  |
| Non Mascherato          | 09:12                       | 00:25:05.700 | 70.7 dBA |  |  |  |
| Mascherato              | Mascherato 00:00:00 0.0 dBA |              |          |  |  |  |



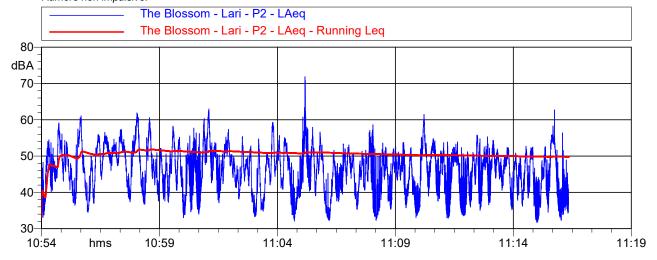
Lari (PI) Località: Strumentazione: 831C 11546

Marco Correngia - TCAA Massimo Moli Hz 01/06/2022 10:54:39 16 Hz Nome operatore:

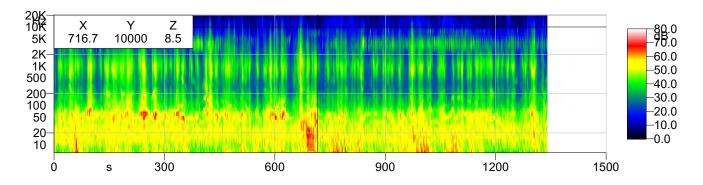

Data, ora misura:


L1: 59.4 dBA L10: 53.4 dBA

L50: 46.2 dBA L90: 37.1 dBA


L95: 35.3 dBA L99: 33.5 dBA

 $L_{Aeq} = 49.8 dB$ 






Annotazioni: Traffico veicolare sulla strada parallela. Rumore non impulsivo.

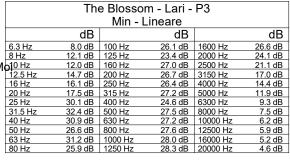


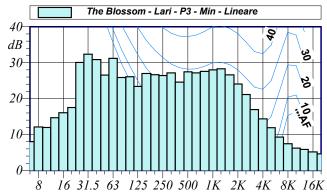
| The Blossom - Lari - P2<br>LAeq - Running Leq |       |              |          |  |
|-----------------------------------------------|-------|--------------|----------|--|
| Nome Inizio Durata Leq                        |       |              |          |  |
| Totale                                        | 10:54 | 00:22:20.400 | 49.8 dBA |  |
| Non Mascherato                                | 10:54 | 00:22:20.400 | 49.8 dBA |  |
| Mascherato                                    |       | 00:00:00     | 0.0 dBA  |  |



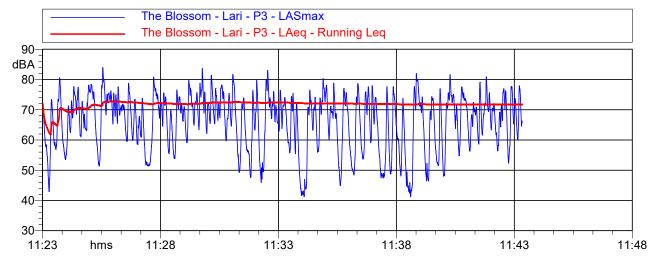
Lari (PI) Località: Strumentazione: 831C 11546

Marco Correngia - TCAA Massimo Mo10 Hz 01/06/2022 11:23:14 16 Hz Nome operatore:

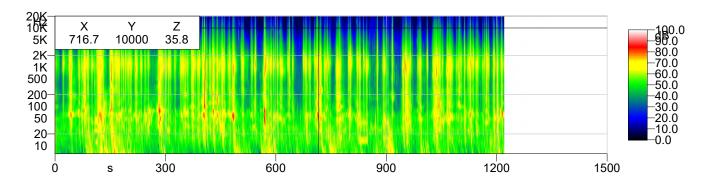

Data, ora misura: 01/06/2022 11:23:14


L1: 81.4 dBA L10: 76.1 dBA

L50: 66.1 dBA L90: 50.0 dBA


L95: 46.6 dBA L99: 41.6 dBA

 $L_{Aeq} = 71.7 \text{ dB}$ 






Annotazioni: Traffico veicolare. Rumore non impulsivo.



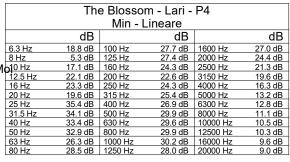
| The Blossom - Lari - P3<br>LAeq - Running Leq |       |              |          |  |
|-----------------------------------------------|-------|--------------|----------|--|
| Nome Inizio Durata Leq                        |       |              |          |  |
| Totale                                        | 11:23 | 00:20:19.799 | 71.7 dBA |  |
| Non Mascherato                                | 11:23 | 00:20:19.799 | 71.7 dBA |  |
| Mascherato                                    |       | 00:00:00     | 0.0 dBA  |  |

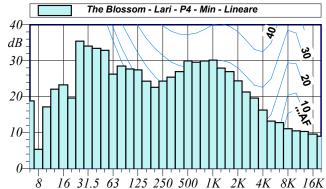


The Blossom - Lari - P4 Nome misura:

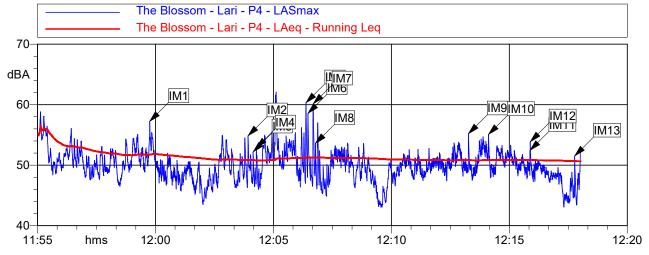
Lari (PI) Località: 831C 11546 Strumentazione:

Marco Correngia - TCAA Massimo Mo10 Hz 12.5 Hz 01/06/2022 11:55:06 Nome operatore:

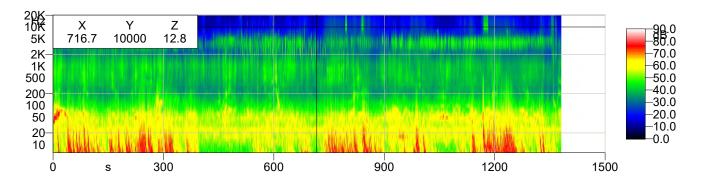

Data, ora misura:


| L1: 57.7 dBA | L10: 53.5 dBA |
|--------------|---------------|

L50: 49.1 dBA L90: 45.5 dBA


L95: 44.7 dBA L99: 43.0 dBA

 $L_{Aeq} = 50.7 dB$ 






Annotazioni: Traffico veicolare sulla strada a nord. Impulsi derivanti dal rumore degli uccellini e quindi non conteggiati.

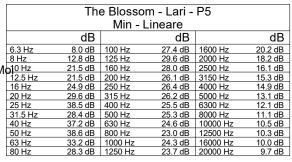


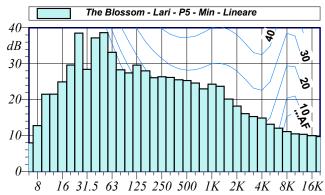
| The Blossom - Lari - P4<br>LAeq - Running Leq |       |          |          |  |
|-----------------------------------------------|-------|----------|----------|--|
| Nome Inizio Durata Leq                        |       |          |          |  |
| Totale                                        | 11:55 | 00:23:01 | 50.7 dBA |  |
| Non Mascherato                                | 11:55 | 00:23:01 | 50.7 dBA |  |
| Mascherato                                    |       | 00:00:00 | 0.0 dBA  |  |



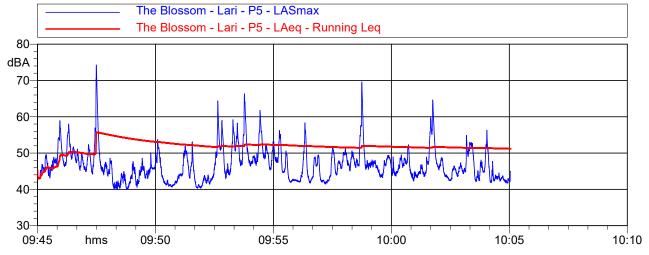
Lari (PI) Località: Strumentazione: 831C 11546

Marco Correngia - TCAA Massimo Mol0 Hz 01/06/2022 09:45:12 16 Hz Nome operatore:

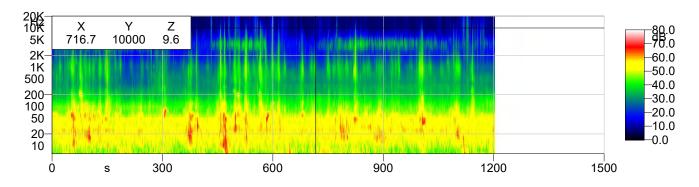

Data, ora misura:


L1: 60.0 dBA L10: 52.0 dBA

L50: 45.5 dBA L90: 41.7 dBA


L95: 40.9 dBA L99: 39.4 dBA

 $L_{Aeq} = 51.2 dB$ 






Annotazioni: Rumore in Iontananta di autoveicoli Rumore impulsivo nel rumore naturale e da traffico veicolare quindi non conteggiato.

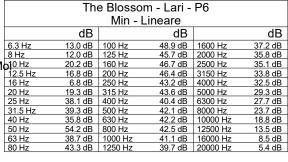


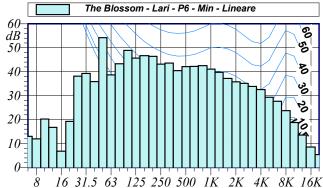
| The Blossom - Lari - P5<br>LAeg - Running Leg |       |              |          |  |
|-----------------------------------------------|-------|--------------|----------|--|
| Nome Inizio Durata Leq                        |       |              |          |  |
| Totale                                        | 09:45 | 00:20:02.600 | 51.2 dBA |  |
| Non Mascherato                                | 09:45 | 00:20:02.600 | 51.2 dBA |  |
| Mascherato                                    |       | 00:00:00     | 0.0 dBA  |  |



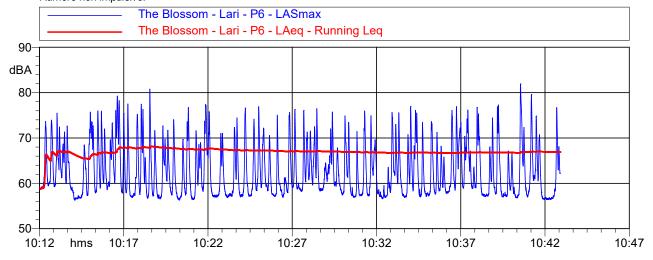
Lari (PI) Località: Strumentazione: 831C 11546

Marco Correngia - TCAA Massimo Moli Hz 01/06/2022 10:12:36 16 Hz Nome operatore:

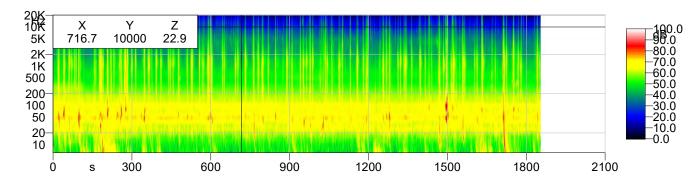

Data, ora misura:


| L1: 78.2 dBA | L10: 70.5 dBA |
|--------------|---------------|

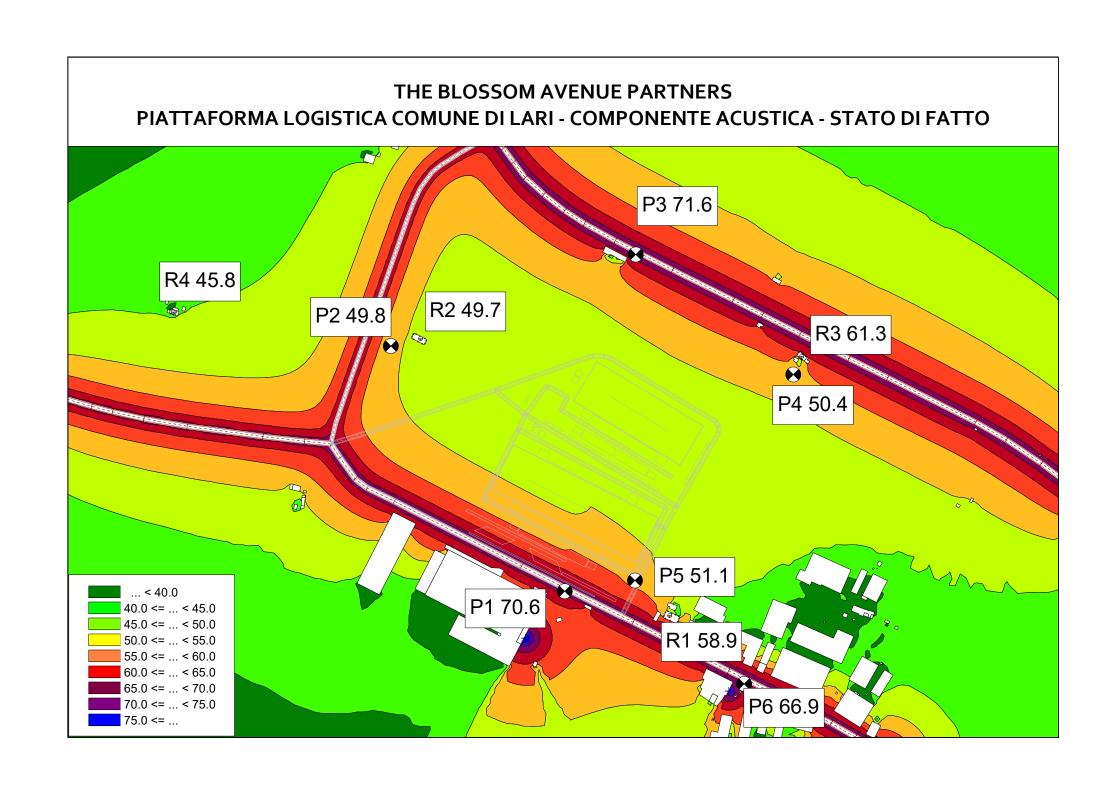
L50: 59.8 dBA L90: 57.0 dBA

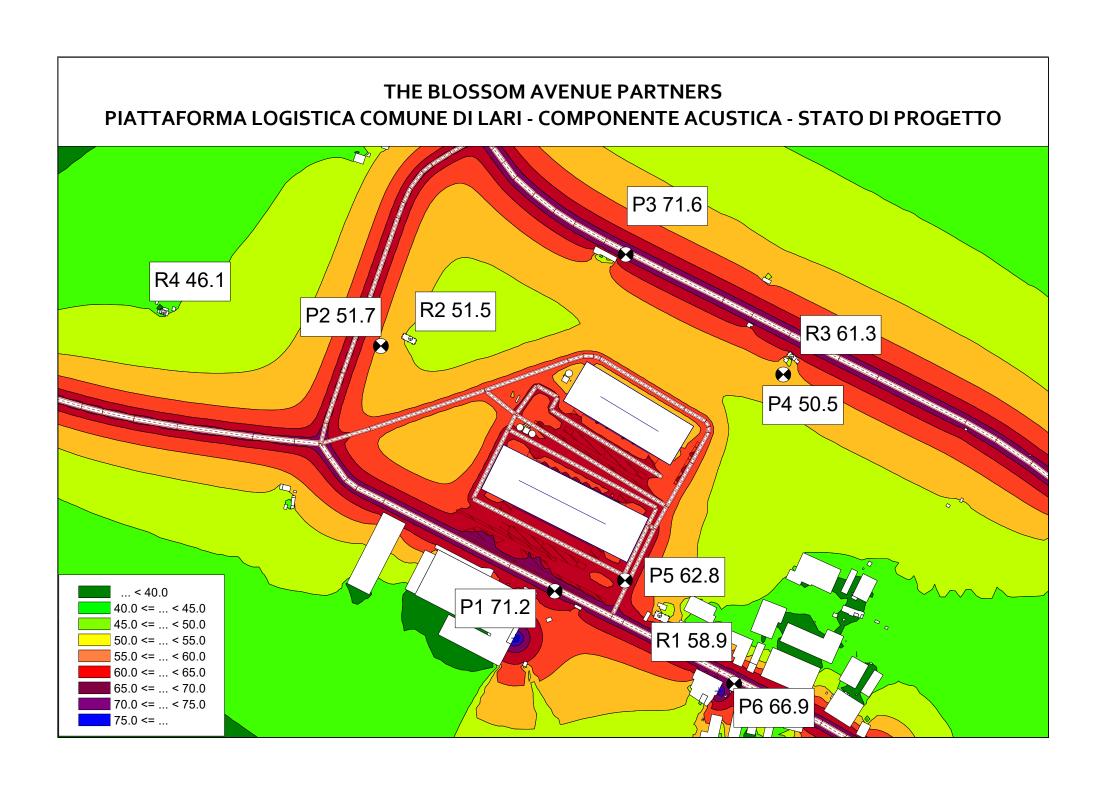

L95: 56.7 dBA L99: 56.1 dBA

 $L_{Aeq} = 66.9 dB$ 







Annotazioni: Traffico veicolare e rumore da impianti industriali nel rumore di fondo. Rumore non impulsivo.




| The Blossom - Lari - P6 |            |              |          |  |  |  |  |
|-------------------------|------------|--------------|----------|--|--|--|--|
|                         | LAeq - Run | ning Leq     |          |  |  |  |  |
| Nome Inizio Durata Leq  |            |              |          |  |  |  |  |
| Totale                  | 10:12      | 00:30:53.700 | 66.9 dBA |  |  |  |  |
| Non Mascherato          | 10:12      | 00:30:53.700 | 66.9 dBA |  |  |  |  |
| Mascherato              |            | 00:00:00     | 0.0 dBA  |  |  |  |  |



# Allegato 2 Modello del clima acustico allo SDF e SDP





# Allegato 3 Certificato di taratura della strumentazione

# Calibration Certificate

Certificate Number 2021005917

Customer: Spectra

Via J.F. Kennedy, 19

Vimercate, MB 20871, Italy

Model NumberPRM831Procedure NumberD0001.8383Serial Number071129TechnicianAshley AndersonTest ResultsPassCalibration Date17 May 2021

Initial Condition As Manufactured Calibration Due
Temperature

DescriptionLarson Davis 1/2" Preamplifier for Model 831Humidity50.4%RH $\pm 0.5$ %RHType 1Static Pressure85.71kPa $\pm 0.03$ kPa

**Evaluation Method**Tested electrically using a 12.0 pF capacitor to simulate microphone capacitance.

Data reported in dB re 20  $\mu$ Pa assuming a microphone sensitivity of 50.0 mV/Pa.

Compliance Standards Compliant to Manufacturer Specifications

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

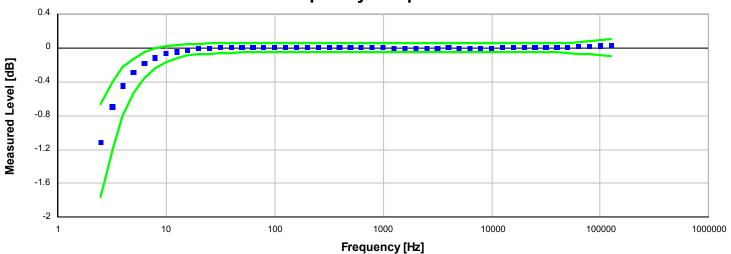
The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

| Standards Used                             |            |            |              |  |  |  |  |
|--------------------------------------------|------------|------------|--------------|--|--|--|--|
| Description                                | Cal Date   | Cal Due    | Cal Standard |  |  |  |  |
| Agilent 34401A DMM                         | 03/02/2021 | 03/02/2022 | 002588       |  |  |  |  |
| Larson Davis Model 2900 Real Time Analyzer | 01/20/2021 | 01/20/2022 | 002931       |  |  |  |  |
| SRS DS360 Ultra Low Distortion Generator   | 03/09/2021 | 03/09/2022 | 006311       |  |  |  |  |
| Hart Scientific 2626-H Temperature Probe   | 02/04/2021 | 08/04/2022 | 006767       |  |  |  |  |






± 0.01 °C

24.01 °C

# **Frequency Response**



Frequency response electrically tested at 120.0 dB re 1 uV

| Frequency [Hz] | Test Result<br>[dB re 1 kHz] | Lower limit [dB] | Upper limit [dB] | Expanded<br>Uncertainty [dB] | Result |
|----------------|------------------------------|------------------|------------------|------------------------------|--------|
| 2.50           | -1.12                        | -1.76            | -0.66            | 0.12                         | Pass   |
| 3.20           | -0.70                        | -1.20            | -0.40            | 0.12                         | Pass   |
| 4.00           | -0.45                        | -0.81            | -0.23            | 0.12                         | Pass   |
| 5.00           | -0.29                        | -0.53            | -0.13            | 0.12                         | Pass   |
| 6.30           | -0.19                        | -0.36            | -0.05            | 0.12                         | Pass   |
| 7.90           | -0.12                        | -0.24            | -0.01            | 0.12                         | Pass   |
| 10.00          | -0.07                        | -0.17            | 0.03             | 0.12                         | Pass   |
| 12.60          | -0.05                        | -0.13            | 0.04             | 0.12                         | Pass   |
| 15.80          | -0.03                        | -0.09            | 0.04             | 0.12                         | Pass   |
| 20.00          | -0.01                        | -0.08            | 0.05             | 0.12                         | Pass   |
| 25.10          | -0.01                        | -0.07            | 0.05             | 0.12                         | Pass   |
| 31.60          | 0.00                         | -0.07            | 0.05             | 0.12                         | Pass   |
| 39.80          | 0.00                         | -0.06            | 0.05             | 0.12                         | Pass   |
| 50.10          | 0.00                         | -0.06            | 0.05             | 0.12                         | Pass   |
| 63.10          | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 79.40          | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 100.00         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 125.90         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 158.50         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 199.50         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 251.20         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 316.20         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 398.10         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 501.20         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 631.00         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 794.30         | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 1,000.00       | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 1,258.90       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 1,584.90       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 1,995.30       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 2,511.90       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 3,162.30       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001





#### Certificate Number 2021005917

| Frequency [Hz] | Test Result<br>[dB re 1 kHz] | Lower limit [dB] | Upper limit [dB] | Expanded<br>Uncertainty [dB] | Result |
|----------------|------------------------------|------------------|------------------|------------------------------|--------|
| 3,981.10       | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 5,011.90       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 6,309.60       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 7,943.30       | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 10,000.00      | -0.01                        | -0.05            | 0.05             | 0.12                         | Pass   |
| 12,589.30      | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 15,848.90      | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 19,952.60      | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 25,118.90      | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 31,622.80      | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 39,810.70      | 0.00                         | -0.05            | 0.05             | 0.12                         | Pass   |
| 50,118.70      | 0.00                         | -0.06            | 0.06             | 0.12                         | Pass   |
| 63,095.70      | 0.01                         | -0.07            | 0.07             | 0.12                         | Pass   |
| 79,432.80      | 0.01                         | -0.08            | 0.08             | 0.12                         | Pass   |
| 100,000.00     | 0.02                         | -0.09            | 0.09             | 0.12                         | Pass   |
| 125,892.50     | 0.03                         | -0.10            | 0.10             | 0.26                         | Pass   |

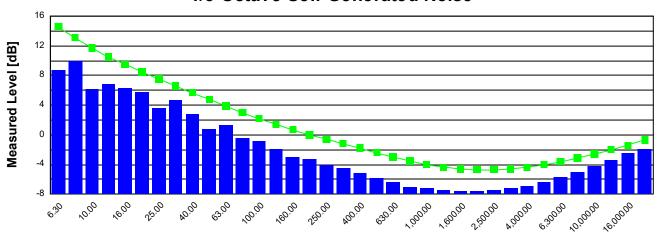
#### **Gain Measurement**

| Measurement         | Test Result [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |  |
|---------------------|------------------|------------------|------------------|---------------------------|--------|--|
| Output Gain @ 1 kHz | -0.15            | -0.45            | -0.03            | 0.12                      | Pass   |  |

-- End of measurement results--

#### **DC Bias Measurement**

| Measurement | Test Result [V] | Lower limit [V] | Upper limit [V] | Expanded Uncertainty [V] | Result |  |
|-------------|-----------------|-----------------|-----------------|--------------------------|--------|--|
| DC Voltage  | 18.27           | 15.50           | 19.50           | 0.04                     | Pass   |  |


-- End of measurement results--





6/3/2021 12:30:31PM Page 3 of 5

# 1/3-Octave Self-Generated Noise



# Frequency [Hz]

| E [H-]         | Test Result  | Upper limit  |        |
|----------------|--------------|--------------|--------|
| Frequency [Hz] | [dB re 1 µV] | [dB re 1 μV] | Result |
| 6.30           | 8.80         | 14.60        | Pass   |
| 8.00           | 9.90         | 13.10        | Pass   |
| 10.00          | 6.20         | 11.70        | Pass   |
| 12.50          | 6.80         | 10.50        | Pass   |
| 16.00          | 6.30         | 9.50         | Pass   |
| 20.00          | 5.80         | 8.50         | Pass   |
| 25.00          | 3.60         | 7.50         | Pass   |
| 31.50          | 4.70         | 6.60         | Pass   |
| 40.00          | 2.80         | 5.70         | Pass   |
| 50.00          | 0.80         | 4.80         | Pass   |
| 63.00          | 1.30         | 3.90         | Pass   |
| 80.00          | -0.40        | 3.00         | Pass   |
| 100.00         | -0.80        | 2.20         | Pass   |
| 125.00         | -1.90        | 1.40         | Pass   |
| 160.00         | -3.00        | 0.70         | Pass   |
| 200.00         | -3.30        | 0.00         | Pass   |
| 250.00         | -4.10        | -0.60        | Pass   |
| 315.00         | -4.50        | -1.20        | Pass   |
| 400.00         | -5.20        | -1.80        | Pass   |
| 500.00         | -5.80        | -2.40        | Pass   |
| 630.00         | -6.40        | -3.00        | Pass   |
| 800.00         | -7.00        | -3.50        | Pass   |
| 1,000.00       | -7.10        | -4.00        | Pass   |
| 1,250.00       | -7.50        | -4.40        | Pass   |
| 1,600.00       | -7.60        | -4.60        | Pass   |
| 2,000.00       | -7.60        | -4.70        | Pass   |
| 2,500.00       | -7.50        | -4.70        | Pass   |
| 3,150.00       | -7.20        | -4.60        | Pass   |
| 4,000.00       | -6.90        | -4.40        | Pass   |
| 5,000.00       | -6.30        | -4.00        | Pass   |
| 6,300.00       | -5.70        | -3.60        | Pass   |
| 8,000.00       | -5.00        | -3.10        | Pass   |
| 10,000.00      | -4.20        | -2.60        | Pass   |
| 12,500.00      | -3.40        | -2.00        | Pass   |
| 16,000.00      | -2.50        | -1.40        | Pass   |
| 20,000.00      | -1.90        | -0.70        | Pass   |

-- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001





#### Certificate Number 2021005917

# **Self-generated Noise**

| Bandwidth                  | Test Result [μV] | Test Result<br>[dB re 1 μV] | Upper limit<br>[dB re 1 μV] | Result |
|----------------------------|------------------|-----------------------------|-----------------------------|--------|
| A-weighted (1 Hz - 20 kHz) | 1.93             | 5.70                        | 8.00                        | Pass   |
| Broadband (1 Hz - 20 kHz)  | 4.37             | 12.80                       | 15.50                       | Pass   |
|                            | End of me        | asurement results           |                             |        |

Signatory: Ashley Anderson

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001





# ~ Certificate of Calibration and Compliance ~

Microphone Model: 377B02

Serial Number: 330790

Manufacturer: PCB

#### Calibration Environmental Conditions

Environmental test conditions as printed on microphone calibration chart.

### Reference Equipment

| Manufacturer         | Model #   | Serial # | PCB Control # | Cal Date     | Due Date     |
|----------------------|-----------|----------|---------------|--------------|--------------|
| National Instruments | PCIe-6351 | 1896F08  | CA1918        | 10/19/20     | 10/19/21     |
| Larson Davis         | PRM915    | 146      | CA2115        | 4/13/21      | 4/13/22      |
| Larson Davis         | PRM902    | 4394     | CA1244        | 6/30/20      | 6/30/21      |
| Larson Davis         | PRM916    | 128      | CA1553        | 10/14/20     | 10/14/21     |
| Larson Davis         | CAL250    | 5026     | CA1278        | 1/26/21      | 1/26/22      |
| Larson Davis         | 2201      | 151      | CA2073        | 11/24/20     | 11/24/21     |
| Bruel & Kjaer        | 4192      | 3259547  | CA3214        | 1/21/21      | 1/21/22      |
| Larson Davis         | GPRM902   | 5281     | CA1595        | 12/8/20      | 12/8/21      |
| Newport              | iTHX-SD/N | 1080002  | CA1511        | 2/4/21       | 2/4/22       |
| Larson Davis         | PRA951-4  | 234      | CA1154        | 11/11/20     | 11/11/21     |
| Larson Davis         | PRM915    | 136      | CA1434        | 10/14/20     | 10/14/21     |
| 0                    | 0         | 0        | 0             | not required | not required |
| 0                    | 0         | 0        | 0             | not required | not required |
| 0                    | 0         | 0        | 0             | not required | not required |
| 0                    | 0         | 0        | 0             | not required | not required |

Frequency sweep performed with B&K UA0033 electrostatic actuator.

| 1    |       |    | VT  |
|------|-------|----|-----|
| Cond | ition | 01 | Unu |

As Found: n/a

As Left: New Unit, In Tolerance

#### Notes

- 1. Calibration of reference equipment is traceable to one or more of the following National Labs; NIST, PTB or DFM.
- 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc.
- Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540.3 and ISO 17025.
- 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications.
- 5. Open Circuit Sensitivity is measured using the insertion voltage method following procedure AT603-5.
- Measurement uncertainty (95% confidence level with coverage factor of 2) for sensitivity is +/-0.20 dB.
- 7. Unit calibrated per ACS-20.

Technician: Leonard Lukasik

Date: May 19, 2021





3425 Walden Avenue, Depew, New York, 14043

TEL: 888-684-0013

FAX: 716-685-3886

www.pcb.com

ID CAL112-3704282033.445+0

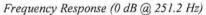
# ~ Calibration Report ~

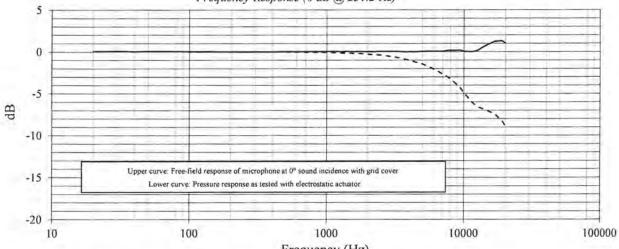
Microphone Model: 377B02 Serial Number: 330790 Description: 1/2" Free-Field Microphone

#### Calibration Data

Open Circuit Sensitivity @ 251.2 Hz: 49.13 mV/Pa

-26.17 dB re 1V/Pa


Polarization Voltage, External:


Capacitance: 12.3 pF

Temperature: 73 °F (23°C)

Ambient Pressure: 1002 mbar

Relative Humidity: 37 %





#### Frequency (Hz)

| Freq<br>(Hz) | Lower<br>(dB) | Upper<br>(dB) |
|--------------|---------------|---------------|--------------|---------------|---------------|--------------|---------------|---------------|--------------|---------------|---------------|
| 20.0         | 0.07          | 0.07          | 1679         | -0.19         | 0.04          | 7499         | -2.94         | 0.13          | -            | -             | -             |
| 25.1         | 0.07          | 0.07          | 1778         | -0.22         | 0.03          | 7943         | -3.22         | 0.17          | 1            | A             | 4.1           |
| 31.6         | 0.08          | 0.08          | 1884         | -0.24         | 0.04          | 8414         | -3.58         | 0.15          | 4            | 1.0           | -             |
| 39.8         | 0.03          | 0.03          | 1995         | -0.29         | 0.02          | 8913         | -3.94         | 0.17          |              | +3            |               |
| 50.1         | 0.06          | 0.06          | 2114         | -0.32         | 0.02          | 9441         | -4,34         | 0.18          | 1.0          |               |               |
| 63.1         | 0.07          | 0.07          | 2239         | -0.35         | 0.02          | 10000        | -4.91         | 0.04          |              |               | +             |
| 79.4         | 0.05          | 0.05          | 2371         | -0.37         | 0.05          | 10593        | -5.37         | 0.04          |              | 4             | -             |
| 100.0        | 0.02          | 0.02          | 2512         | -0.41         | 0.05          | 11220        | -5.86         | 0.00          | 11.6         | 4.            |               |
| 125.9        | 0.02          | 0.02          | 2661         | -0.46         | 0.05          | 11885        | -6.27         | 0.05          | -            |               | -             |
| 158.5        | 0.02          | 0.02          | 2818         | -0.51         | 0.05          | 12589        | -6.58         | 0.19          | 4            | 151           | -             |
| 199:5        | 0.01          | 0.01          | 2985         | -0.57         | 0.05          | 13335        | -6.75         | 0.44          | 1921         |               |               |
| 251.2        | 0.00          | 0.00          | 3162         | -0.63         | 0.05          | 14125        | -6.91         | 0.68          |              | 37            |               |
| 316.2        | 0.00          | 0.01          | 3350         | -0.70         | 0.04          | 14962        | -7.09         | 0.88          |              | 1-            |               |
| 398.1        | -0.01         | -0.01         | 3548         | -0.80         | 0.02          | 15849        | -7.28         | 1.07          |              |               | -             |
| 501.2        | -0.02         | 0.02          | 3758         | -0.90         | 0.00          | 16788        | -7.49         | 1.23          | -            | 6             | -             |
| 631.0        | -0.03         | 0.01          | 3981         | -0.99         | 0.01          | 17783        | -7.85         | 1,27          | 1.2          | .40           |               |
| 794.3        | -0.05         | 0.04          | 4217         | -1,11         | 0.00          | 18837        | -8.23         | 1.28          | -            | 12            |               |
| 1000.0       | -0.07         | 0.05          | 4467         | -1.23         | 0.00          | 19953        | -8.91         | 1.02          | -            | -             | +             |
| 1059.3       | -0.09         | 0.04          | 4732         | -1,34         | 0.03          |              |               |               | - 1          | 7-            | -             |
| 1122.0       | -0.09         | 0.05          | 5012         | -1.48         | 0.06          |              | -             |               | -            | 9             | -             |
| 1188.5       | -0.10         | 0.05          | 5309         | -1.64         | 0.06          |              | 15            |               | -            | 8             | -             |
| 1258.9       | -0.13         | 0.03          | 5623         | -1.81         | 0.07          | -            | -             | 1.3           | -            | 6.1           | -             |
| 1333.5       | -0.15         | 0.03          | 5957         | -2.02         | 0.05          | (3)          |               |               |              | (4)           | -             |
| 1412.5       | -0.15         | 0.04          | 6310         | -2.21         | 0.08          | 1.4          | (2)           | (40)          |              | 2             | +             |
| 1496.2       | -0.18         | 0.02          | 6683         | -2.44         | 0.08          | 141          | -             |               |              | - 3           |               |
| 1584.9       | -0.20         | 0.02          | 7080         | -2.71         | 0.08          |              |               | -             |              | -             |               |

Technician:

Leonard Lukasik

Date:

May 19, 2021





3425 Walden Avenue, Depew, New York, 14043

TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com

# Calibration Certificate

Certificate Number 2021006351

Customer: Spectra

Via J.F. Kennedy, 19 Vimercate, MB 20871, Italy

Model Number Serial Number

CAL200 18957

Test Results

**Pass** 

Initial Condition

As Manufactured

Description

Larson Davis CAL200 Acoustic Calibrator

Procedure Number Technician

D0001.8386 Scott Montgomery

Calibration Date

25 May 2021

Calibration Due Temperature

25

± 0.3 °C °C

Humidity Static Pressure 30

%RH ± 3 %RH 101.4 kPa ± 1 kPa

**Evaluation Method** 

The data is aquired by the insert voltage calibration method using the reference microphone's open

circuit sensitivity. Data reported in dB re 20 µPa.

Compliance Standards

Compliant to Manufacturer Specifications per D0001.8190 and the following standards:

IEC 60942:2017

ANSI S1.40-2006

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

| Cal Date<br>08/04/2020 | Cal Due<br>08/04/2021                  | Cal Standard<br>001021                                                  |
|------------------------|----------------------------------------|-------------------------------------------------------------------------|
|                        | 08/04/2021                             | 001021                                                                  |
| 04/01/2021             |                                        | 2.717.273.7                                                             |
| 04/01/2021             | 04/01/2022                             | 001051                                                                  |
| 02/24/2021             | 02/24/2022                             | 005446                                                                  |
| 08/27/2020             | 08/27/2021                             | 006506                                                                  |
| 08/06/2020             | 08/06/2021                             | 006507                                                                  |
| 09/24/2020             | 09/24/2021                             | 006511                                                                  |
| 07/17/2020             | 07/17/2021                             | 007368                                                                  |
|                        | 08/27/2020<br>08/06/2020<br>09/24/2020 | 08/27/2020 08/27/2021<br>08/06/2020 08/06/2021<br>09/24/2020 09/24/2021 |







#### Certificate Number 2021006351

#### **Output Level**

| Nominal Level<br>[dB] | Pressure<br>[kPa] | Test Result [dB] | Lower limit<br>[dB] | Upper limit<br>[dB] | Expanded Uncertainty [dB] | Result |
|-----------------------|-------------------|------------------|---------------------|---------------------|---------------------------|--------|
| 114                   | 101.2             | 114.01           | 113.80              | 114.20              | 0.14                      | Pass   |
| 94                    | 101.4             | 94.00            | 93.80               | 94.20               | 0.15                      | Pass   |

#### Frequency

| Nominal Level | Pressure | Test Result | Lower limit | Upper limit | Expanded Uncertainty | Result |
|---------------|----------|-------------|-------------|-------------|----------------------|--------|
| [dB]          | [kPa]    | [Hz]        | [Hz]        | [Hz]        | [Hz]                 | Result |
| 114           | 101.2    | 999.98      | 990.00      | 1,010.00    | 0.20                 | Pass   |
| 94            | 101.4    | 999.99      | 990.00      | 1,010.00    | 0.20                 | Pass   |

### **Total Harmonic Distortion + Noise (THD+N)**

| Nominal Level<br>[dB] | Pressure<br>[kPa] | Test Result [%] | Lower limit [%] | Upper limit [%] | Expanded Uncertainty [%] | Result |
|-----------------------|-------------------|-----------------|-----------------|-----------------|--------------------------|--------|
| 114                   | 101.2             | 0.56            | 0.00            | 2.00            | 0.25 ‡                   | Pass   |
| 94                    | 101.4             | 0.53            | 0.00            | 2.00            | 0.25 ‡                   | Pass   |

### **Level Change Over Pressure**

Tested at: 114 dB, 24 °C, 33 %RH

| Pressure<br>[kPa] | Test Result [dB]                                | Lower limit [dB]                                                                                                                                                   | Upper limit [dB]                                                                                                                                                                                                                                      | Expanded Uncertainty [dB]                                                                                                                                                                                                                                                                                                           | Result                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 108.0             | -0.01                                           | -0.30                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                  | 0.04 ‡                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 101.2             | 0.00                                            | -0.30                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                  | 0.04 ‡                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 92.0              | 0.01                                            | -0.30                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                  | 0.04 ‡                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 82.9              | 0.00                                            | -0.30                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                  | 0.04 ‡                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.1              | -0.03                                           | -0.30                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                  | 0.04 ‡                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 65.1              | -0.08                                           | -0.30                                                                                                                                                              | 0.30                                                                                                                                                                                                                                                  | 0.04 ‡                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | [kPa]<br>108.0<br>101.2<br>92.0<br>82.9<br>74.1 | [kPa]         [dB]           108.0         -0.01           101.2         0.00           92.0         0.01           82.9         0.00           74.1         -0.03 | [kPa]         [dB]         [dB]           108.0         -0.01         -0.30           101.2         0.00         -0.30           92.0         0.01         -0.30           82.9         0.00         -0.30           74.1         -0.03         -0.30 | [kPa]         [dB]         [dB]         [dB]           108.0         -0.01         -0.30         0.30           101.2         0.00         -0.30         0.30           92.0         0.01         -0.30         0.30           82.9         0.00         -0.30         0.30           74.1         -0.03         -0.30         0.30 | [kPa]         [dB]         [dB]         [dB]         [dB]           108.0         -0.01         -0.30         0.30         0.04 ‡           101.2         0.00         -0.30         0.30         0.04 ‡           92.0         0.01         -0.30         0.30         0.04 ‡           82.9         0.00         -0.30         0.30         0.04 ‡           74.1         -0.03         -0.30         0.30         0.04 ‡ |

Frequency Change Over Pressure

Tested at: 114 dB, 24 °C, 33 %RH

| Nominal Pressure | Pressure | Test Result | Lower limit | Upper limit | Expanded Uncertainty | Result |
|------------------|----------|-------------|-------------|-------------|----------------------|--------|
| [kPa]            | [kPa]    | [Hz]        | [Hz]        | [Hz]        | [Hz]                 |        |
| 108.0            | 108.0    | 0.00        | -10.00      | 10.00       | 0.20 ‡               | Pass   |
| 101.3            | 101.2    | 0.00        | -10.00      | 10.00       | 0.20 ‡               | Pass   |
| 92.0             | 92.0     | 0.00        | -10.00      | 10.00       | 0.20 ‡               | Pass   |
| 33.0             | 82.9     | 0.00        | -10.00      | 10.00       | 0.20 ‡               | Pass   |
| 74.0             | 74.1     | 0.00        | -10.00      | 10.00       | 0.20 ‡               | Pass   |
| 65.0             | 65.1     | -0.01       | -10.00      | 10.00       | 0.20 ‡               | Pass   |

-- End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001







#### Certificate Number 2021006351

#### Total Harmonic Distortion + Noise (THD+N) Over Pressure

Tested at: 114 dB, 24 °C, 33 %RH

| Nominal Pressure<br>[kPa] | Pressure<br>[kPa] | Test Result | Lower limit [%] | Upper limit<br>[%] | Expanded Uncertainty [%] | Result |  |
|---------------------------|-------------------|-------------|-----------------|--------------------|--------------------------|--------|--|
| 108.0                     | 108.0             | 0.58        | 0.00            | 2.00               | 0.25 ±                   | Pass   |  |
| 101.3                     | 101.2             | 0.55        | 0.00            | 2.00               | 0.25 ‡                   | Pass   |  |
| 92.0                      | 92.0              | 0.52        | 0.00            | 2.00               | 0.25 ±                   | Pass   |  |
| 83.0                      | 82.9              | 0.48        | 0.00            | 2.00               | 0.25 ‡                   | Pass   |  |
| 74.0                      | 74.1              | 0.44        | 0.00            | 2.00               | 0.25 ‡                   | Pass   |  |
| 65.0                      | 65.1              | 0.41        | 0.00            | 2.00               | 0.25 ‡                   | Pass   |  |

<sup>--</sup> End of measurement results--

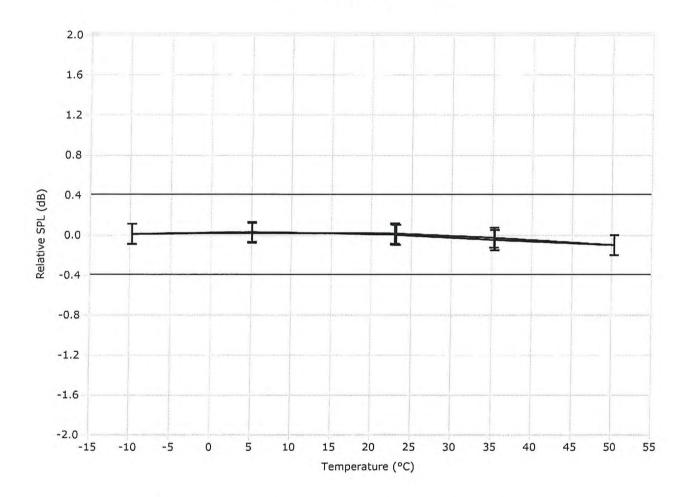
Signatory: Scott Montgomery

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001










# Model CAL200 Relative SPL vs. Temperature

Larson Davis Model CAL200 Serial Number: 18957

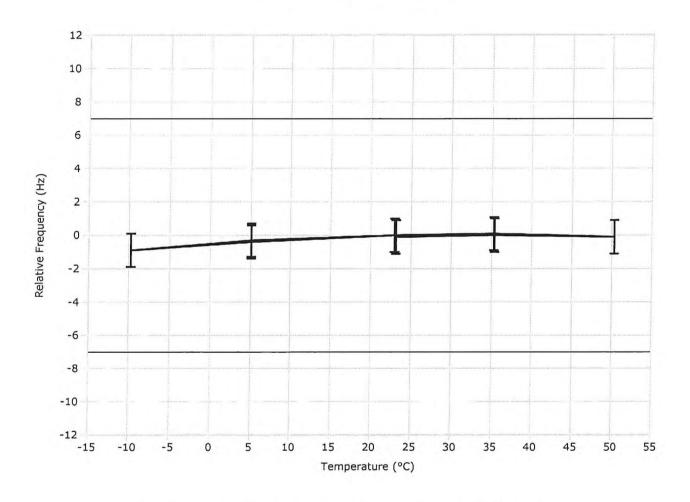
Model CAL200 Relative SPL vs. Temperature at 50% RH. A 2559 Mic (SN: 2994) with a PRM901 Preamp (SN: 0120), station 18 was used to check the levels.

Test Date: 18 May 2021 3:26:55 PM



0.1dB expanded uncertainty at ~95% confidence level (k=2)

Sequence File: CAL200.SEQ


Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com



# Model CAL200 Relative Frequency vs. Temperature Larson Davis Model CAL200 Serial Number: 18957

Model CAL200 Relative Frequency vs. Temperature at 50% RH. A 2559 Mic (SN: 2994) with a PRM901 Preamp (SN: 0120), station 18 was used to check the levels.

Test Date: 18 May 2021 3:26:55 PM



1.0 Hz expanded uncertainty at ~95% confidence level (k=2)

Sequence File: CAL200.SEQ

Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com

Page 2 of 2

# Calibration Certificate

Certificate Number 2021006952

Customer:

**Spectra** 

Via J.F. Kennedy, 19

Vimercate, MB 20871, Italy

831C D0001.8384 Model Number Procedure Number 11546 Ron Harris Serial Number Technician Test Results Calibration Date 10 Jun 2021 **Pass** 

Calibration Due **Initial Condition** As Manufactured

23.92 °C ± 0.25 °C Temperature Larson Davis Model 831C 51.8 Description Humidity %RH ± 2.0 %RH Class 1 Sound Level Meter 85.98 kPa

Static Pressure

Firmware Revision: 04.6.2R1

**Evaluation Method** Tested with: Data reported in dB re 20 µPa.

Larson Davis PRM831. S/N 071129

PCB 377B02. S/N 330790 Larson Davis CAL200. S/N 9079 Larson Davis CAL291. S/N 0108

Compliance Standards Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8378:

IEC 60651:2001 Type 1 ANSI S1.4-2014 Class 1 IEC 60804:2000 Type 1 ANSI S1.4 (R2006) Type 1 IEC 61260:2014 Class 1 ANSI S1.11-2014 Class 1 IEC 61672:2013 Class 1 ANSI S1.43 (R2007) Type 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017.

Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev B, 2017-03-31

For 1/4" microphones, the Larson Davis ADP024 1/4" to 1/2" adaptor is used with the calibrators and the Larson Davis ADP043 1/4" to

2021-6-10T15:45:02





± 0.13 kPa

#### Certificate Number 2021006952

1/2" adaptor is used with the preamplifier.

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

Periodic tests were performed in accordance with precedures from IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part3.

No Pattern approval for IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 available.

The sound level meter submitted for testing successfully completed the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3, for the environmental conditions under which the tests were performed. However, no general statement or conclusion can be made about conformance of the sound level meter to the full specifications of IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 because (a) evidence was not publicly available, from an independent testing organization responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the class 1 specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1 or correction data for acoustical test of frequency weighting were not provided in the Instruction Manual and (b) because the periodic tests of IEC 61672-3:2013 / ANSI/ASA S1.4-2014/Part 3 cover only a limited subset of the specifications in IEC 61672-1:2013 / ANSI/ASA S1.4-2014/Part 1.

| S                                                    | Standards Used | I          |              |
|------------------------------------------------------|----------------|------------|--------------|
| Description                                          | Cal Date       | Cal Due    | Cal Standard |
| Larson Davis CAL291 Residual Intensity Calibrator    | 2020-09-18     | 2021-09-18 | 001250       |
| Hart Scientific 2626-H Temperature Probe             | 2021-02-04     | 2022-08-04 | 006767       |
| Larson Davis CAL200 Acoustic Calibrator              | 2020-07-21     | 2021-07-21 | 007027       |
| Larson Davis Model 831                               | 2021-03-02     | 2022-03-02 | 007182       |
| PCB 377A13 1/2 inch Prepolarized Pressure Microphone | 2021-03-03     | 2022-03-03 | 007185       |
| SRS DS360 Ultra Low Distortion Generator             | 2021-04-13     | 2022-04-13 | 007635       |
| Larson Davis 1/2" Preamplifier for Model 831 Type 1  | 2020-10-06     | 2021-10-06 | PCB0004783   |

#### **Acoustic Calibration**

Measured according to IEC 61672-3:2013 10 and ANSI S1.4-2014 Part 3: 10

| Measurement | Test Result [dB] | Lower Limit [dB] | Upper Limit [dB] | Expanded Uncertainty [dB] | Result |  |
|-------------|------------------|------------------|------------------|---------------------------|--------|--|
| 1000 Hz     | 114.01           | 113.80           | 114.20           | 0.14                      | Pass   |  |

#### **Loaded Circuit Sensitivity**

| Measurement | Test Result<br>[dB re 1 V / Pa] | Lower Limit<br>[dB re 1 V / Pa] | Upper Limit<br>[dB re 1 V / Pa] | Expanded Uncertainty [dB] | Result |
|-------------|---------------------------------|---------------------------------|---------------------------------|---------------------------|--------|
| 1000 Hz     | -26.24                          | -27.84                          | -24.74                          | 0.14                      | Pass   |

<sup>--</sup> End of measurement results--

### **Acoustic Signal Tests, C-weighting**

Measured according to IEC 61672-3:2013 12 and ANSI S1.4-2014 Part 3: 12 using a comparison coupler with Unit Under Test (UUT) and reference SLM using slow time-weighted sound level for compliance to IEC 61672-1:2013 5.5; ANSI S1.4-2014 Part 1: 5.5

| Frequency [Hz] | Test Result [dB] | Expected [dB] | Lower Limit [dB] | Upper Limit [dB] | Expanded Uncertainty [dB] | Result |
|----------------|------------------|---------------|------------------|------------------|---------------------------|--------|
| 125            | -0.03            | -0.20         | -1.20            | 0.80             | 0.23                      | Pass   |
| 1000           | 0.12             | 0.00          | -0.70            | 0.70             | 0.23                      | Pass   |
| 8000           | -2.86            | -3.00         | -5.50            | -1.50            | 0.32                      | Pass   |

<sup>--</sup> End of measurement results--

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-6-10T15:45:02





# **Self-generated Noise**

Measured according to IEC 61672-3:2013 11.1 and ANSI S1.4-2014 Part 3: 11.1

Measurement Test Result [dB]

A-weighted, 20 dB gain

40.19

-- End of measurement results--

-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001





# Calibration Certificate

Certificate Number 2021006922

Customer: Spectra

Via J.F. Kennedy, 19 Vimercate, MB 20871, Italy

Model Number831CProcedure NumberD0001.8378Serial Number11546TechnicianRon HarrisTest ResultsPassCalibration Date10 Jun 2021

Initial Condition As Manufactured Calibration Due

Description Larson Davis Model 831C Humidity 49.8 %RH ± 2.0 %RH

Class 1 Sound Level Meter Static Pressure 85.9 kPa ± 0.13 kPa

Firmware Revision: 04.6.2R1

**Evaluation Method**Tested electrically using Larson Davis PRM831 S/N 071129 and a 12.0 pF capacitor to simulate

microphone capacitance. Data reported in dB re 20 μPa assuming a microphone sensitivity of 50.0

Temperature

23.69 °C

± 0.25 °C

mV/Pa.

Compliance Standards Compliant to Manufacturer Specifications and the following standards when combined with

Calibration Certificate from procedure D0001.8384:

IEC 60651:2001 Type 1 ANSI S1.4-2014 Class 1
IEC 60804:2000 Type 1 ANSI S1.4 (R2006) Type 1
IEC 61672:2013 Class 1 ANSI S1.43 (R2007) Type 1
IEC 61260:2014 Class 1 ANSI S1.11-2014 Class 1

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the International System of Units (SI) through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2017. **Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.** 

The quality system is registered to ISO 9001:2015.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

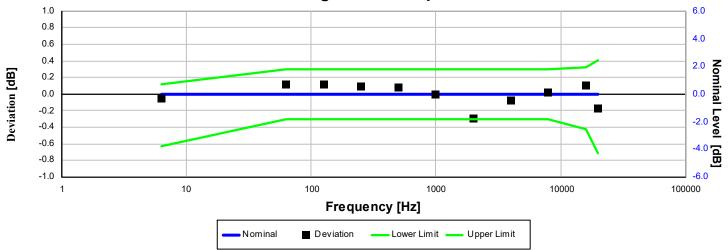
Correction data from Larson Davis SoundAdvisor Model 831C Reference Manual, I831C.01 Rev M, 2019-09-10

Calibration Check Frequency: 1000 Hz; Reference Sound Pressure Level: 114 dB re 20 µPa; Reference Range: 0 dB gain

2021-6-10T14:44:44






#### Certificate Number 2021006922

| Standards Used                           |            |            |              |  |  |  |
|------------------------------------------|------------|------------|--------------|--|--|--|
| Description                              | Cal Date   | Cal Due    | Cal Standard |  |  |  |
| Hart Scientific 2626-H Temperature Probe | 2021-02-04 | 2022-08-04 | 006767       |  |  |  |
| SRS DS360 Ultra Low Distortion Generator | 2021-01-05 | 2022-01-05 | 007118       |  |  |  |



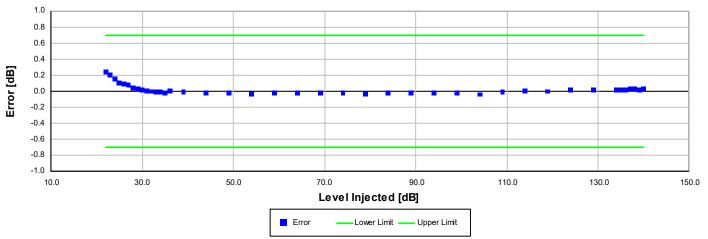


# **Z-weight Filter Response**



Electrical signal test of frequency weighting performed according to IEC 61672-3:2013 13 and ANSI S1.4-2014 Part 3: 13 for compliance to IEC 61672-1:2013 5.5; IEC 60651:2001 6.1 and 9.2.2; IEC 60804:2000 5; ANSI S1.4:1983 (R2006) 5.1 and 8.2.1; ANSI S1.4-2014 Part 1: 5.5

| Frequency [Hz] | Test Result [dB] | Deviation [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |
|----------------|------------------|----------------|------------------|------------------|---------------------------|--------|
| 6.31           | -0.05            | -0.05          | -0.63            | 0.12             | 0.15                      | Pass   |
| 63.10          | 0.12             | 0.12           | -0.30            | 0.30             | 0.15                      | Pass   |
| 125.89         | 0.12             | 0.12           | -0.30            | 0.30             | 0.15                      | Pass   |
| 251.19         | 0.09             | 0.09           | -0.30            | 0.30             | 0.15                      | Pass   |
| 501.19         | 0.08             | 0.08           | -0.30            | 0.30             | 0.15                      | Pass   |
| 1,000.00       | 0.00             | 0.00           | -0.30            | 0.30             | 0.15                      | Pass   |
| 1,995.26       | -0.29            | -0.29          | -0.30            | 0.30             | 0.15                      | Pass   |
| 3,981.07       | -0.07            | -0.07          | -0.30            | 0.30             | 0.15                      | Pass   |
| 7,943.28       | 0.03             | 0.03           | -0.30            | 0.30             | 0.15                      | Pass   |
| 15,848.93      | 0.10             | 0.10           | -0.42            | 0.32             | 0.15                      | Pass   |
| 19,952.62      | -0.17            | -0.17          | -0.71            | 0.41             | 0.15                      | Pass   |


-- End of measurement results--

2021-6-10T14:44:44





# A-weighted 0 dB Gain Broadband Log Linearity: 8,000.00 Hz



Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

| Level [dB] | Error [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |
|------------|------------|------------------|------------------|---------------------------|--------|
| 22.00      | 0.24       | -0.70            | 0.70             | 0.16                      | Pass   |
| 23.00      | 0.20       | -0.70            | 0.70             | 0.16                      | Pass   |
| 24.00      | 0.15       | -0.70            | 0.70             | 0.16                      | Pass   |
| 25.00      | 0.11       | -0.70            | 0.70             | 0.16                      | Pass   |
| 26.00      | 0.10       | -0.70            | 0.70             | 0.16                      | Pass   |
| 27.00      | 0.08       | -0.70            | 0.70             | 0.16                      | Pass   |
| 28.00      | 0.04       | -0.70            | 0.70             | 0.16                      | Pass   |
| 29.00      | 0.03       | -0.70            | 0.70             | 0.18                      | Pass   |
| 30.00      | 0.02       | -0.70            | 0.70             | 0.17                      | Pass   |
| 31.00      | 0.01       | -0.70            | 0.70             | 0.17                      | Pass   |
| 32.00      | 0.00       | -0.70            | 0.70             | 0.17                      | Pass   |
| 33.00      | -0.01      | -0.70            | 0.70             | 0.16                      | Pass   |
| 34.00      | -0.01      | -0.70            | 0.70             | 0.16                      | Pass   |
| 35.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 36.00      | 0.01       | -0.70            | 0.70             | 0.16                      | Pass   |
| 39.00      | -0.01      | -0.70            | 0.70             | 0.16                      | Pass   |
| 44.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 49.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 54.00      | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 59.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 64.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 69.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 74.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 79.00      | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 84.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 89.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 94.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 99.00      | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 104.00     | -0.04      | -0.70            | 0.70             | 0.15                      | Pass   |
| 109.00     | -0.01      | -0.70            | 0.70             | 0.15                      | Pass   |
| 114.00     | 0.00       | -0.70            | 0.70             | 0.15                      | Pass   |
| 119.00     | 0.00       | -0.70            | 0.70             | 0.15                      | Pass   |
| 124.00     | 0.01       | -0.70            | 0.70             | 0.15                      | Pass   |
| 129.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |
| 134.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |
| 135.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |

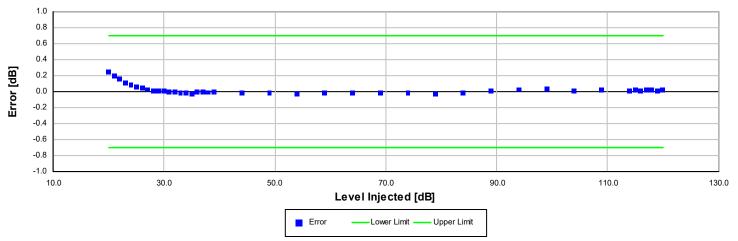
LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-6-10T14:44:44





#### Certificate Number 2021006922


| Level [dB] | Error [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |
|------------|------------|------------------|------------------|---------------------------|--------|
| 136.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |
| 137.00     | 0.03       | -0.70            | 0.70             | 0.15                      | Pass   |
| 138.00     | 0.03       | -0.70            | 0.70             | 0.15                      | Pass   |
| 139.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |
| 140.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |

<sup>--</sup> End of measurement results--





### A-weighted 20 dB Gain Broadband Log Linearity: 8,000.00 Hz



Broadband level linearity performed according to IEC 61672-3:2013 16 and ANSI S1.4-2014 Part 3: 16 for compliance to IEC 61672-1:2013 5.6, IEC 60804:2000 6.2, IEC 61252:2002 8, ANSI S1.4 (R2006) 6.9, ANSI S1.4-2014 Part 1: 5.6, ANSI S1.43 (R2007) 6.2

| 5.6, IEC 60804:2000 6.2, IEC 61252:20  Level [dB] | Error [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |
|---------------------------------------------------|------------|------------------|------------------|---------------------------|--------|
| 20.00                                             | 0.24       | -0.70            | 0.70             | 0.17                      | Pass   |
| 21.00                                             | 0.19       | -0.70            | 0.70             | 0.16                      | Pass   |
| 22.00                                             | 0.15       | -0.70            | 0.70             | 0.16                      | Pass   |
| 23.00                                             | 0.10       | -0.70            | 0.70             | 0.16                      | Pass   |
| 24.00                                             | 0.07       | -0.70            | 0.70             | 0.16                      | Pass   |
| 25.00                                             | 0.06       | -0.70            | 0.70             | 0.16                      | Pass   |
| 26.00                                             | 0.04       | -0.70            | 0.70             | 0.19                      | Pass   |
| 27.00                                             | 0.02       | -0.70            | 0.70             | 0.18                      | Pass   |
| 28.00                                             | 0.01       | -0.70            | 0.70             | 0.19                      | Pass   |
| 29.00                                             | 0.00       | -0.70            | 0.70             | 0.18                      | Pass   |
| 30.00                                             | 0.00       | -0.70            | 0.70             | 0.17                      | Pass   |
| 31.00                                             | -0.01      | -0.70            | 0.70             | 0.17                      | Pass   |
| 32.00                                             | -0.01      | -0.70            | 0.70             | 0.17                      | Pass   |
| 33.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 34.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 35.00                                             | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 36.00                                             | 0.00       | -0.70            | 0.70             | 0.16                      | Pass   |
| 37.00                                             | -0.01      | -0.70            | 0.70             | 0.16                      | Pass   |
| 38.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 39.00                                             | -0.01      | -0.70            | 0.70             | 0.16                      | Pass   |
| 44.00                                             | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 49.00                                             | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 54.00                                             | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 59.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 64.00                                             | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 69.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 74.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 79.00                                             | -0.03      | -0.70            | 0.70             | 0.16                      | Pass   |
| 84.00                                             | -0.02      | -0.70            | 0.70             | 0.16                      | Pass   |
| 89.00                                             | 0.01       | -0.70            | 0.70             | 0.16                      | Pass   |
| 94.00                                             | 0.02       | -0.70            | 0.70             | 0.16                      | Pass   |
| 99.00                                             | 0.03       | -0.70            | 0.70             | 0.16                      | Pass   |
| 104.00                                            | 0.01       | -0.70            | 0.70             | 0.15                      | Pass   |
| 109.00                                            | 0.01       | -0.70            | 0.70             | 0.15                      | Pass   |
| 114.00                                            | 0.01       | -0.70            | 0.70             | 0.15                      | Pass   |
| 115.00                                            | 0.01       | -0.70            | 0.70             | 0.15                      | Pass   |

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-6-10T14:44:44





#### Certificate Number 2021006922

| Level [dB] | Error [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |  |
|------------|------------|------------------|------------------|---------------------------|--------|--|
| 116.00     | 0.00       | -0.70            | 0.70             | 0.15                      | Pass   |  |
| 117.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |  |
| 118.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |  |
| 119.00     | 0.01       | -0.70            | 0.70             | 0.15                      | Pass   |  |
| 120.00     | 0.02       | -0.70            | 0.70             | 0.15                      | Pass   |  |

-- End of measurement results--

#### **Peak Rise Time**

Peak rise time performed according to IEC 60651:2001 9.4.4 and ANSI S1.4:1983 (R2006) 8.4.4

| Amplitude [dB] | Duration [μs] |                | Test Result [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |
|----------------|---------------|----------------|------------------|------------------|------------------|---------------------------|--------|
| 139.00         | 40            | Negative Pulse | 136.08           | 134.75           | 136.75           | 0.15                      | Pass   |
|                |               | Positive Pulse | 136.08           | 134.75           | 136.75           | 0.15                      | Pass   |
|                | 30            | Negative Pulse | 135.08           | 134.75           | 136.75           | 0.15                      | Pass   |
|                |               | Positive Pulse | 135.04           | 134.75           | 136.75           | 0.15                      | Pass   |
|                |               |                | End of meas      | surement results |                  |                           |        |

# **Positive Pulse Crest Factor**

#### 200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

| Amplitude [dB] | Crest Factor | Test Result [dB] | Limits [dB] | Expanded Uncertainty [dB] | Result |
|----------------|--------------|------------------|-------------|---------------------------|--------|
| 138.00         | 3            | OVLD             | ± 0.50      | 0.15 ‡                    | Pass   |
|                | 5            | OVLD             | ± 1.00      | 0.15 ‡                    | Pass   |
|                | 10           | OVLD             | ± 1.50      | 0.15 ‡                    | Pass   |
| 128.00         | 3            | 0.06             | ± 0.50      | 0.15 ‡                    | Pass   |
|                | 5            | 0.08             | ± 1.00      | 0.15 ‡                    | Pass   |
|                | 10           | OVLD             | ± 1.50      | 0.15 ‡                    | Pass   |
| 118.00         | 3            | 0.04             | ± 0.50      | 0.15 ‡                    | Pass   |
|                | 5            | 0.08             | ± 1.00      | 0.15 ‡                    | Pass   |
|                | 10           | 0.11             | ± 1.50      | 0.15 ‡                    | Pass   |
| 108.00         | 3            | 0.04             | ± 0.50      | 0.15 ‡                    | Pass   |
|                | 5            | 0.07             | ± 1.00      | 0.15 ‡                    | Pass   |
|                | 10           | 0.04             | ± 1.50      | 0.15 ‡                    | Pass   |

<sup>--</sup> End of measurement results--

2021-6-10T14:44:44





#### **Negative Pulse Crest Factor**

#### 200 µs pulse tests at 2.0, 12.0, 22.0, 32.0 dB below Overload Limit

Crest Factor measured according to IEC 60651:2001 9.4.2 and ANSI S1.4:1983 (R2006) 8.4.2

| Amplitude [dB] | Crest Factor | Test Result [dB] | Limits [dB]           | Expanded Uncertainty [dB] | Result |
|----------------|--------------|------------------|-----------------------|---------------------------|--------|
| 138.00         | 3            | OVLD             | ± 0.50                | 0.15 ‡                    | Pass   |
|                | 5            | OVLD             | ± 1.00                | 0.15 ‡                    | Pass   |
|                | 10           | OVLD             | ± 1.50                | 0.15 ‡                    | Pass   |
| 128.00         | 3            | 0.06             | ± 0.50                | 0.15 ‡                    | Pass   |
|                | 5            | 0.08             | ± 1.00                | 0.15 ‡                    | Pass   |
|                | 10           | OVLD             | ± 1.50                | 0.15 ‡                    | Pass   |
| 118.00         | 3            | 0.04             | ± 0.50                | 0.15 ‡                    | Pass   |
|                | 5            | 0.05             | ± 1.00                | 0.15 ‡                    | Pass   |
|                | 10           | -0.07            | ± 1.50                | 0.15 ‡                    | Pass   |
| 108.00         | 3            | 0.03             | ± 0.50                | 0.15 ‡                    | Pass   |
|                | 5            | 0.06             | ± 1.00                | 0.15 ‡                    | Pass   |
|                | 10           | 0.20             | ± 1.50                | 0.16 ‡                    | Pass   |
|                |              | End o            | f measurement results | S                         |        |

#### Gain

Gain measured according to IEC 61672-3:2013 17.3 and 17.4 and ANSI S1.4-2014 Part 3: 17.3 and 17.4

| Measurement           | Test Result [dB] | Lower limit [dB] | Upper limit [dB] | Expanded Uncertainty [dB] | Result |
|-----------------------|------------------|------------------|------------------|---------------------------|--------|
| 0 dB Gain             | 94.01            | 93.92            | 94.12            | 0.15                      | Pass   |
| 0 dB Gain, Linearity  | 28.07            | 27.32            | 28.72            | 0.16                      | Pass   |
| 20 dB Gain            | 94.03            | 93.92            | 94.12            | 0.15                      | Pass   |
| 20 dB Gain, Linearity | 23.08            | 22.32            | 23.72            | 0.16                      | Pass   |
| OBA High Range        | 94.02            | 93.20            | 94.80            | 0.15                      | Pass   |
| OBA Normal Range      | 94.02            | 93.92            | 94.12            | 0.15                      | Pass   |

<sup>--</sup> End of measurement results--

#### **Broadband Noise Floor**

Self-generated noise measured according to IEC 61672-3:2013 11.2 and ANSI S1.4-2014 Part 3: 11.2

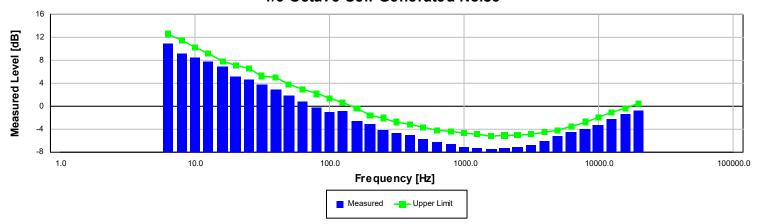
| Measurement          | Test Result [dB] | Upper limit [dB] | Result |
|----------------------|------------------|------------------|--------|
| A-weight Noise Floor | 6.26             | 9.00             | Pass   |
| C-weight Noise Floor | 12.08            | 15.00            | Pass   |
| Z-weight Noise Floor | 21.86            | 25.00            | Pass   |

<sup>--</sup> End of measurement results--

#### **Total Harmonic Distortion**

Measured using 1/3-Octave filters

2021-6-10T14:44:44


| Measurement  | Test Result [dB] | Lower Limit [dB]     | Upper Limit [dB] | Expanded Uncertainty [dB] | Result |
|--------------|------------------|----------------------|------------------|---------------------------|--------|
| 10 Hz Signal | 137.76           | 137.20               | 138.80           | 0.15                      | Pass   |
| THD          | -76.50           |                      | -60.00           | 1.30 ‡                    | Pass   |
| THD+N        | -75.48           |                      | -60.00           | 1.30 ‡                    | Pass   |
|              | <u>-</u> -       | End of measurement r | esults           | ·                         |        |

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001





#### 1/3-Octave Self-Generated Noise



The SLM is set to normal range and 20 dB gain.

| F              | Took DoI4 [JD]   | Human kimit (3D) | D14    |
|----------------|------------------|------------------|--------|
| Frequency [Hz] | Test Result [dB] | Upper limit [dB] | Result |
| 6.30           | 11.02            | 12.60            | Pass   |
| 8.00           | 9.30             | 11.50            | Pass   |
| 10.00          | 8.51             | 10.20            | Pass   |
| 12.50          | 7.76             | 9.20             | Pass   |
| 16.00          | 6.98             | 7.90             | Pass   |
| 20.00          | 5.29             | 7.20             | Pass   |
| 25.00          | 4.75             | 6.60             | Pass   |
| 31.50          | 3.80             | 5.30             | Pass   |
| 40.00          | 2.98             | 5.00             | Pass   |
| 50.00          | 1.89             | 3.80             | Pass   |
| 63.00          | 0.84             | 3.00             | Pass   |
| 80.00          | -0.09            | 2.20             | Pass   |
| 100.00         | -0.97            | 1.40             | Pass   |
| 125.00         | -0.78            | 0.70             | Pass   |
| 160.00         | -2.55            | -0.40            | Pass   |
| 200.00         | -3.05            | -1.50            | Pass   |
| 250.00         | -4.08            | -2.00            | Pass   |
| 315.00         | -4.73            | -2.70            | Pass   |
| 400.00         | -4.98            | -3.10            | Pass   |
| 500.00         | -5.80            | -3.70            | Pass   |
| 630.00         | -6.25            | -4.10            | Pass   |
| 800.00         | -6.67            | -4.30            | Pass   |
| 1,000.00       | -7.09            | -4.70            | Pass   |
| 1,250.00       | -7.21            | -4.80            | Pass   |
| 1,600.00       | -7.39            | -5.20            | Pass   |
| 2,000.00       | -7.36            | -5.10            | Pass   |
| 2,500.00       | -7.15            | -5.00            | Pass   |
| 3,150.00       | -6.72            | -4.80            | Pass   |
| 4,000.00       | -6.03            | -4.50            | Pass   |
| 5,000.00       | -5.24            | -4.10            | Pass   |
| 6,300.00       | -4.58            | -3.40            | Pass   |
| 8,000.00       | -4.01            | -2.70            | Pass   |
| 10,000.00      | -3.32            | -1.90            | Pass   |
| 12,500.00      | -2.26            | -1.10            | Pass   |
| 16,000.00      | -1.39            | -0.30            | Pass   |
| 20,000.00      | -0.65            | 0.60             | Pass   |
| ,              | End of measu     |                  |        |

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001

2021-6-10T14:44:44





-- End of Report--

Signatory: Ron Harris

LARSON DAVIS - A PCB PIEZOTRONICS DIV. 1681 West 820 North Provo, UT 84601, United States 716-684-0001



